Integrative taxonomy of the stunt nematodes of the genera Bitylenchus and Tylenchorhynchus (Nematoda, Telotylenchidae) with description of two new species and a molecular phylogeny

ZAFAR A. HANDOO ${ }^{1}$, JUAN E. PALOMARES-RIUS ${ }^{2}$, CAROLINA CANTALAPIEDRA-NAVARRETE ${ }^{2}$, GRACIA LIÉBANAS ${ }^{3}$, SERGEI A. SUBBOTIN ${ }^{4,5}$ and PABLO CASTILLO ${ }^{2 *}$
${ }^{1}$ Nematology Laboratory, USDA, ARS, Bldg. 010A, BARC-West, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
${ }^{2}$ Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Avenida Menéndez Pidal s/n, Apdo. 4084, Campus de Excelencia Internacional Agroalimentario, ceiA3, 14005 Córdoba, Spain
${ }^{3}$ Departamento de Biología Animal, Biología Vegetal y Ecología. Universidad de Jaén, Campus 'Las Lagunillas's /n, Edificio B3, 23071 Jaén, Spain
${ }^{4}$ Plant Pest Diagnostic Center, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832-1448, USA
${ }^{5}$ Center of Parasitology of A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Leninskii Prospect 33, Moscow, 117071, Russia

Received 20 March 2014; revised 20 May 2014; accepted for publication 27 May 2014

Abstract

Stunt nematodes are characterized by phenotypic plasticity, with overlapping morphology and morphometry leading to potential misidentification. Consequently, the application of integrative taxonomic approaches is useful to species delimitation based on a combination of different perspectives, e.g. morphology and DNA sequences. We conducted nematode surveys in cultivated and natural environments in Spain and the USA, from which we identified 18 known species of the family Telotylenchidae and two new taxa within the studied samples. These species were morphologically, morphometrically, and molecularly characterized. The results of light and scanning electron microscopic observations, and molecular and phylogenetic analysis also allowed two new species to be distinguished, described herein as Bitylenchus hispaniensis sp. nov. and Tylenchorhynchus mediterraneus sp. nov. The phylogenetic analysis was carried out using molecular data from nuclear ribosomal DNA genes [D2-D3 expansion segments of the large ribosomal subunit (28S), internal transcribed spacer (ITS), and partial small ribosomal subunit (18S)]. We also provide here a test of alternative hypotheses that confirms the monophyly of both Tylenchorhynchus and Bitylenchus sensu Siddiqi's classification but does not support Fortuner \& Luc's conceptual view of Tylenchorhynchus as a large genus. Ancestral state reconstructions of several diagnostic morphological characters using a maximum parsimony approach showed congruence in morphological and molecular evolution for stylet knob inclination and tail tip annulation. Our analysis emphasizes some of the problems related to the taxonomy and phylogeny of nematodes of Telotylenchinae.

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 172, 231-264.
doi: 10.1111/zoj. 12175
ADDITIONAL KEYWORDS: $18 S$ - Bayesian inference - cryptic species - D2-D3 expansion segments of the large ribosomal subunit $(28 S)$ - internal transcribed spacer - Shimodaira-Hasegawa test - stylet knob inclination - tail tip annulation.

[^0]
INTRODUCTION

The genus Tylenchorhynchus Cobb, 1913, and related genera represent a large group of plant-parasitic nematodes. These nematodes are known by the common name 'stunt nematodes'. Stunt nematodes are one of the largest groups of plant-parasitic nematodes within the order Tylenchida. There have been several attempts to classify them into different genera using various morphological characters, and different classifications have been proposed and developed depending on the authors' views of the taxonomic importance of these characters. Three classifications are currently most widely used: Fortuner \& Luc (1987), Siddiqi (2000), and Geraert (2011). The use of molecular phylogenetic analysis allows the monophyly of different genera and higher rank taxa to be tested, and can improve upon the morphologically based classifications of these nematodes. For example, recently, the presence of deirids combined with the results of molecular phylogenetic studies (Subbotin et al., 2006; van Megen et al., 2009) were used by Sturhan (2011) as major arguments to exclude the subfamily Merliniinae from Telotylenchidae and reestablish the family Merliniidae Siddiqi, 1971. Stunt nematodes are obligate migratory root-ectoparasites of many plants, including various agricultural crops and native plants (Siddiqi, 2000). Several species have been reported to damage crops, e.g. Tylenchorhynchus claytoni Steiner, 1937, and Bitylenchus maximus (Allen, 1955) Siddiqi, 1986, on corn (Barker, 1974); Tylenchorhynchus annulatus (Cassidy, 1930) Golden, 1971, and Tylenchorhynchus nudus Allen, 1955 on sorghum (Starr, 1992); and Tylenchorhynchus clarus on alfalfa (Noel \& Lownsbery, 1978). Consequently, accurate and timely identification of Tylenchorhynchus spp. infecting crops is a prerequisite for designing effective management strategies, and reliable identification allows distinction between pathogenic and nonpathogenic stunt nematodes. Application of integrative taxonomic approaches is useful to species delimitation based on integration of different perspectives, e.g. morphology and DNA sequences (Dayrat, 2005). Integrative taxonomy has now been efficiently applied for nematodes (Neres et al., 2010; Apolônio Silva De Oliveira et al., 2012; Gutiérrez-Gutiérrez et al., 2013a, b), other invertebrates (Schlick-Steiner et al., 2010), vertebrates (Wiens \& Penkrot, 2002), and plants (Marcussen, 2003).

Since the genera Tylenchorhynchus and Bitylenchus were established, many species have been identified and described. Allen (1955) published the first revision of the genus Tylenchorhynchus and 23 genera have been proposed since that date (Tarjan, 1973; Fortuner \& Luc, 1987; Brzeski \& Dolinski, 1998; Handoo, 2000; Siddiqi, 2000; Geraert, 2011; Ganguly, Lal \& Rathour, 2013). These genera are considered to constitute the family Telotylenchidae or the subfamily Telotylenchinae
defined by Siddiqi (1960) (Geraert, 2011). Several different concepts of the subfamily Telotylenchinae have been proposed and are presently in use: Fortuner \& Luc (1987) recognized the following genera within the subfamily Telotylenchinae: Tylenchorhynchus (= Bitylenchus, Telotylenchus Siddiqi, 1960, and six other genera), Trophurus Loof, 1956, Trichotylenchus Whitehead, 1960, Nagelus Thorne \& Malek, 1968, Paratrophurus Arias, 1970, Merlinius Siddiqi, 1970, Triversus Sher, 1974, and Amplimerlinius Siddiqi, 1976. According to Siddiqi (2000) the subfamily Telotylenchinae contains Tylenchorhynchus, Bitylenchus Filipjev, 1934, Trophurus, Telotylenchus, Trichotylenchus, Paratrophurus, Histotylenchus Siddiqi, 1971, Quinisulcius Siddiqi, 1971, Telotylenchoides Siddiqi, 1971, Uliginotylenchus Siddiqi, 1971, Sauertylenchus Sher, 1974, and Neodolichorhynchus Jairajpuri \& Hunt, 1984. Geraert (2011) included nine genera in the subfamily Telotylenchinae: Histotylenchus, Neodolichorhynchus, Paratrophurus, Quinisulcius, Sauertylenchus, Telotylenchus, Trichotylenchus, Trophurus, and Tylenchorhynchus. Amongst these, the genus Tylenchorhynchus is well established and widely accepted by nematologists and contains the highest number of species, although its boundary definition is controversial. According to Geraert (2011) the genus Tylenchorhynchus includes 133 nominal species that are not easy to identify. Ganguly et al. (2013) compiled a check list of 144 nominal species of Tylenchorhynchus with Bitylenchus.

Bitylenchus was proposed as a subgenus of the genus Tylenchus by Filipjev (1934); however, it was later synonymized with Tylenchorhynchus (Filipjev, 1936). Jairajpuri (1982) resurrected Bitylenchus as a subgenus within Tylenchorhynchus, and Gómez Barcina, Siddiqi \& Castillo (1992) and Siddiqi (2000) recognized it as a valid genus with six and 29 species, respectively, and provided detailed genus diagnoses. The genus Bitylenchus is differentiated from Tylenchorhynchus in having areolated outer bands of lateral fields, a large postanal intestinal sac containing intestinal granules and fasciculi, relatively more thickened cuticle at the female tail tip, and gubernaculum lacking a crest. Fortuner \& Luc (1987) considered the genus Bitylenchus as a junior synonym of Tylenchorhynchus, arguing that it 'was defined using very secondary characteristics that are not known for many taxa, and that, when known, do not clearly differentiate this genus from Tylenchorhynchus'.
$18 S$ rRNA, internal transcribed spacer (ITS), and D2-D3 expansion segments of the $28 S r R N A$ gene sequences have been shown to be useful diagnostic markers for the characterization of Telotylenchinae species and reconstruction of their phylogenetic relationships (Chen et al., 2006; Subbotin et al., 2006; Holterman et al., 2009; van Megen et al., 2009; Carta,

Skantar \& Handoo, 2010). However, to date, a limited number of species of these genera has been sequenced and included in these analyses and testing of the validity of genera has never been comprehensively conducted. Likelihood-based statistical tests of competing evolutionary hypotheses (tree topologies) have been available for more than two decades. The Shimodaira-Hasegawa (SH) test (Shimodaira \& Hasegawa, 1999) has some advantages over other tests (i.e. Kishino-Hasegawa or Templeton tests), as it simultaneously compares multiple topologies and corrects the corresponding P-values to accommodate the multiplicity of testing and may be applied to a posteriori hypotheses (Buckley et al., 2001).

The objectives of this study were to: (1) carry out a detailed morphological and morphometric characterization of Tylenchorhynchus and Bitylenchus species and populations from cultivated and native plants from southern Spain and several states in the USA; (2) perform a molecular characterization of the species and populations using sequences of the D2-D3 expansion segments of the $28 S$ rRNA gene, the ITS of the rRNA gene, and the partial $18 S$ rRNA gene; (3) carry out a phylogenetic analysis within Tylenchorhynchus, Bitylenchus, and related genera based on sequences of the rRNA gene fragments; and (4) test the validity of the proposed genera of the Telotylenchinae using the SH test.

MATERIAL AND METHODS

NEMATODE POPULATIONS AND

 MORPHOLOGICAL STUDIESSurveys for Tylenchorhynchus, Bitylenchus, and other Telotylenchidae were carried out in cultivated and natural environments in southern Spain and several states in the USA between 2010 and 2012. Nematode populations used in this study were obtained from several host-plants and localities and were characterized morphologically and identified to species level (Table 1). In addition, topotypes of Paratrophurus striatus Castillo, Siddiqi \& Gómez-Barcina, 1989, were collected in the type locality and sequenced (Table 1). Populations from nontype localities analysed morphologically and molecularly in this study are proposed as standard and reference populations for each species given until topotype material becomes available and molecularly characterized.

Specimens were extracted from soil samples using the magnesium sulphate centrifugal flotation method (Coolen, 1979). Specimens for light microscopy (LM) were killed by gentle heat, fixed in a solution of 4% formaldehyde $+1 \%$ propionic acid, and processed to pure glycerine using Seinhorst's (1966) method. Nematode specimens were examined and measured in three
laboratories (USDA, USA; IAS-CSIC, Spain; and CDFA, USA) using a Leica Leitz DMRB compound microscope (Leica Microsystems, Wetzlar, Germany), Zeiss III compound microscope (Munich, Germany), or Olympus BX51 (USA), respectively, equipped with a Nomarski differential interference contrast. Line drawing illustrations were created using Adobe Illustrator (Adobe Systems Inc., San Jose, CA, USA) by tracing outlines of morphological structures from underlaid photomicrographs and referencing details from multiple specimens. Individual line drawings were then assembled into composite plates using Adobe InDesign. For scanning electron microscope (SEM) studies, fixed specimens were dehydrated in a graded ethanol series, critical point dried, sputter-coated with gold, and observed with a JEOL JSM-5800 microscope (Abolafia, Liebanas \& Peña-Santiago, 2002). Morphometric data were processed using STATISTIX 9.0 (NH Analytical Software, Roseville, MN, USA) and expressed as: mean $\pm \mathrm{SD}$ (range).

DNA EXTRACTION, PCR ASSAYS, AND SEQUENCING

For molecular analyses, two live nematodes from each sample were temporarily mounted in a drop of 1 M NaCl containing glass beads. After taking measurements and photomicrographs of diagnostic characters, the slides were dismantled and DNA extracted. Nematode DNA was extracted from single individuals and PCR assays were conducted as described by Castillo et al. (2003). The D2-D3 expansion segments of $28 S$ rRNA were amplified using the D2A (5^{\prime}-ACAAGTACCGTGAGGGA AAGTTG-3') and D3B (5^{\prime}-TCGGAAGGAACCAGC TACTA-3') primers (Castillo et al., 2003). The ITS region was amplified using the forward primer TW81 (5^{\prime} GTTTCCGTAGGTGAACCTGC-3') and reverse primer AB28 (5'-ATATGCTTAAGTTCAGCGGGT-3') as described in Subbotin et al. (2001). Finally, the partial $18 S r R N A$ was amplified using the primers G18SU (5'-GCTTGTCTCAAAGATTAAGCC-3') and F18Tyl1 (5^{\prime} GTGCCAGCAGCCGCGGTAATTCC-3') (Chizhov et al., 2006).

PCR products were purified after amplification using ExoSAP-IT (Affymetrix, USB products) or QIAquick (Qiagen, USA) gel extraction kits, quantified using a Nanodrop spectrophotometer (Nanodrop Technologies, Wilmington, DE, USA) and used for direct sequencing in both directions using the primers referred above or for cloning. The PCR products were cloned into the pGEM-T vector and transformed into JM109 High Efficiency Competent Cells (Promega, USA). Several clones of each sample were isolated using blue/ white selection and subjected to PCR with the same primers. PCR products from each clone were sequenced in both directions. The resulting products were purified and run on a DNA multicapillary sequencer
Table 1. Nematode species and populations used in the present morphological and molecular study

Species	Reference			GenBank accession no.		
	Sample code	Location	Host	D2-D3 of 28S rRNA gene	$\begin{aligned} & \text { ITS rRNA } \\ & \text { gene } \end{aligned}$	$\begin{aligned} & 18 S \text { rRNA } \\ & \text { gene } \end{aligned}$
Dolichodorus mediterraneus	AR31	Tarifa, Cádiz, Spain	Wild olive (Olea europaea ssp. sylvestris)	KJ461523	-	-
Paratrophurus bhutanensis	H152h	Niebla, Huelva, Spain	Fig tree (Ficus carica)	KJ461524	KJ461568	KJ461601
Paratrophurus loofi	CD362	Coto Rios, Jaén, Spain	Ash tree (Fraxinus angustifolia)	KJ461525	-	-
Paratrophurus striatus	CD338	Arroyo Frío, Jaén, Spain	Black poplar (Populus nigra)	KJ461526	-	-
Telotylenchus sp.	CD201	Bank of June Lake, Mono County, California, USA	Unknown grasses	KJ461527, KJ461528	-	-
Trophurus imperialis	J071	Lebrija, Sevilla, Spain	Grapevine (Vitis vinifera)	KJ461529	-	-
Bitylenchus brevilineatus	H42P	Villalba del Alcor, Huelva, Spain	Eucalyptus (Eucalyptus globulus)	KJ461533	-	KJ461603
Bitylenchus hispaniensis sp. nov.	OL32	Córdoba, Córdoba, Spain	Wild olive (Olea europaea ssp. sylvestris)	KJ461544	KJ461576	KJ461608
Bitylenchus hispaniensis sp. nov.	OL09	Castro del Río, Córdoba, Spain	Olive (Olea europaea ssp. europaea)	KJ461545	KJ461577	KJ461609
Bitylenchus hispaniensis sp. nov.	OL76	Albanchez, Jaén, Spain	Olive (Olea europaea ssp. europaea)	KJ461546	KJ461578	-
Bitylenchus hispaniensis sp. nov.	H162	Bonares, Huelva, Spain	Olive (Olea europaea ssp. europaea)	KJ461547	-	-
Bitylenchus hispaniensis sp. nov.	ST16C	El Saucejo, Sevilla, Spain	Olive (Olea europaea ssp. europaea)	KJ461548	-	-
Bitylenchus hispaniensis sp. nov.	M060	Montilla, Córdoba, Spain	Grapevine (Vitis vinifera)	*	-	-
Bitylenchus hispaniensis sp. nov.	OL46	Génave, Jaén, Spain	Olive (Olea europaea ssp. europaea)	*	-	-
Bitylenchus iphilus	HATOR	Villamanrique de la Condesa, Sevilla, Spain	Cork oak (Quercus suber)	KJ461549	KJ461579	KJ461610
Bitylenchus maximus	419	Andújar, Jaén, Spain	Wild olive (Olea europaea ssp. sylvestris)	KJ461551	KJ461581	KJ461611
Bitylenchus maximus	H187	Niebla, Huelva, Spain	Wild olive (Olea europaea ssp. sylvestris)	KJ461552	KJ461582	KJ461612
					KJ461583	
Bitylenchus ventrosignatus	H085	Bollullos par del Condado, Huelva, Spain	Grapevine (Vitis vinifera)	KJ461567	KJ461596	KJ461617
Tylenchorhynchus aduncus	CONI	Conil de la Frontera, Cádiz, Spain	Sharp rush (Juncus acutus)	KJ461530	KJ461569	KJ461602
Tylenchorhynchus aduncus	AR16	Sanlúcar de Barrameda, Cádiz, Spain	Wild olive (Olea europaea ssp. sylvestris)	KJ461531	KJ461570	-
Tylenchorhynchus agri	CD304	Lake Worth, Florida, USA	Dwarf date palm (Phoenix roebelenii)	KJ461559	KJ461591	-
					KJ461592	
Tylenchorhynchus agri	CD712	Delray Beach, Florida, USA	Majesty palm (Ravenea rivularis)	KJ461560, KJ475549	KJ461593	-
Tylenchorhynchus annulatus	CD252	Napa County, California, USA	Undetermined grasses	KJ461532, KJ475545	KJ461571	-
					KJ461572	
Tylenchorhynchus clarus	H152	Niebla, Huelva, Spain	Fig tree (Ficus carica)	KJ461534	KJ461573	KJ461604
Tylenchorhynchus clarus	H09	Chucena, Huelva, Spain	Cork oak (Quercus suber)	KJ461535	KJ461574	KJ461605
Tylenchorhynchus clarus	J228	Sanlúcar de Barrameda, Cádiz, Spain	Tamarisk (Tamarix gallica)	KJ461536	KJ461575	KJ461606
Tylenchorhynchus clarus	H163	Niebla, Huelva, Spain	Wheat (Triticum aestivum)	KJ461537	-	KJ461607
Tylenchorhynchus clarus	J059	Jerez de la Frontera, Cádiz, Spain	Sunflower (Helianthus annuus)	KJ461538	-	-
Tylenchorhynchus clarus	CD129	Merced County, California, USA	Alfalfa (Medicago sativa)	KJ461539, KJ461540	-	-
Tylenchorhynchus clarus	CD197	Calusa County, California, USA	Grapevine (Vitis vinifera)	KJ461541	-	-
Tylenchorhynchus claytoni	CD591	PPDC, CDFA, received from Mississippi, USA	Unknown plant	KJ461542, KJ461543	-	
Tylenchorhynchus leviterminalis	CD303	PPDC, CDFA, received from Wilton, Connecticut, USA	Avocado (Persea americana)	KJ475546, KJ475547, KJ475548, KJ461550	KJ461580	-
Tylenchorhynchus mediterraneus sp. nov.	VIDV	Jerez de la Frontera, Cádiz, Spain	Grapevine (Vitis vinifera)	KJ461553	KJ461584	KJ461613
Tylenchorhynchus mediterraneus sp. nov.	OL57	Marchena, Sevilla, Jaén, Spain	Olive (Olea europaea ssp. europaea)	KJ461554	KJ461585	KJ461614
Tylenchorhynchus mediterraneus sp. nov.	HUEV	Huevar, Huelva, Spain	Olive (Olea europaea ssp. europaea)	KJ461555	KJ461586	-
Tylenchorhynchus mediterraneus sp. nov.	H038	Almonte, Huelva, Spain	Stone pine (Pinus pinea)	KJ461556	KJ461587	KJ461615
Tylenchorhynchus mediterraneus sp. nov.	POM	Benalup-Casas Viejas, Cádiz, Spain	Grapefruit (Citrus maxima)	KJ461557	-	KJ461616
Tylenchorhynchus mediterraneus sp. nov.	MONT	Montemayor, Córdoba, Spain	Grapevine (Vitis vinifera)	KJ461558	-	-
Tylenchorhynchus mediterraneus sp. nov.	J221	Rota, Cádiz, Spain	Sunflower (Helianthus annuus)	*	KJ461588	-
Tylenchorhynchus mediterraneus sp. nov.	M157	La Rambla, Córdoba, Spain	Grapevine (Vitis vinifera)	*	-	-
Tylenchorhynchus mediterraneus sp. nov.	AR42	Tabernas, Almería, Spain	Olive (Olea europaea ssp. europaea)	*	KJ461589	-
Tylenchorhynchus mediterraneus sp. nov.	H010	Chucena, Huelva, Spain	Olive (Olea europaea ssp. europaea)	*	KJ461590	-
Tylenchorhynchus zeae	OL91	Alcalá la Real, Jaén, Spain	Olive (Olea europaea ssp. europaea)	KJ461563	KJ461597	KJ461618
Tylenchorhynchus zeae	H032	Manzanilla, Huelva, Spain	Grapevine (Vitis vinifera)	KJ461564	KJ461598	KJ461619
Tylenchorhynchus zeae	M105	Montilla, Córdoba, Spain	Olive (Olea europaea ssp. europaea)	KJ461565	KJ461599	-
Tylenchorhynchus zeae	ST18C	Santaella, Córdoba, Spain	Olive (Olea europaea ssp. europaea)	KJ461566	KJ461600	-

[^1](Model 3130XL genetic analyser; Applied Biosystems, Foster City, CA, USA), using the BigDye Terminator Sequencing Kit v. 3.1 (Applied Biosystems) at the Stab Vida sequencing facilities (Caparica, Portugal), and Davis Sequencing (Davis, CA, USA). The newly obtained sequences were submitted to the GenBank database under the accession numbers indicated on the phylogenetic trees and Table 1.

PHYLOGENETIC ANALYSES

New D2-D3 expansion segments of $28 S$ rRNA, ITS $r R N A$, and partial $18 S r R N A$ sequences of species from the family Telotylenchidae and other published stunt nematode sequences from GenBank were used for phylogenetic reconstruction. Outgroup taxa for each data set were chosen according to previous published data (Subbotin et al., 2006; van Megen et al., 2009; Carta et al., 2010). The newly obtained and published sequences for each gene were aligned respectively using the MAFFT program v. 7 (Katoh \& Standley, 2013) with default parameters. Three sequence data sets were developed: (1) D2-D3 of $28 S r R N A$ alignment; (2) ITS $r R N A$ alignment; (3) partial $18 S r R N A$ alignment. For hypothesis testing three additional data sets for each of the gene fragments with one sequence per species were also created. Sequence alignments were manually edited using BioEdit (Hall, 1999). Phylogenetic analyses of the sequence data sets were performed with maximum likelihood (ML) using PAUP * 4 b10 (Swofford, 2003) and Bayesian inference (BI) using MrBayes 3.1.2 (Huelsenbeck \& Ronquist, 2001). The best-fitting model of DNA evolution was obtained using jModelTest v. 2 (Darriba et al., 2012) with the Akaike information criterion (AIC). The Akaike-supported model, the base frequency, the proportion of invariable sites, and the gamma distribution shape parameters and substitution rates in the AIC were then used in phylogenetic analyses. BI analysis under a general time reversible of invariable sites and a gamma-shaped distribution (GTR + I + G) model for the D2-D3 expansion segment of $28 S r R N A$, a transversional model of invariable sites and a gamma-shaped distribution (TVM + I + G) for ITS, and a transitional model of invariable sites and a gamma-shaped distribution (TIM1 + I + G) for the partial $18 S r R N A$ was initiated with a random starting tree and run with the four Metropolis-coupled Markov chain Monte Carlo (MCMC) analyses for 1×10^{6} generations. The MCMC analyses were sampled at intervals of 100 generations. Two runs were performed for each analysis. After discarding burn-in samples and evaluating convergence, the remaining samples were retained for further analyses. The topologies were used to generate a 50% majority rule consensus tree. Posterior probabilities (PP) and bootstrap support (BS) are given on appropriate clades. Trees were visualized using

TreeView (Page, 1996). In the ML analysis, estimation of the support for each node was obtained by bootstrap analysis with 100 fast-step replicates. In order to test the alternative topologies, we used the SH test as implemented in PAUP (Swofford, 2003) using the RELL option, based on D2-D3 expansion segments of $28 S$, ITS, and partial $18 S$ rRNA genes.

MORPHOLOGICAL MATRIX AND MAPPING OF MORPHOLOGICAL CHARACTERS

Several qualitative morphological characters (presence of tail tip annulation, shape of tail terminus, tail, stylet knobs, and lip region) proposed by Handoo (2000) for stunt nematode identification were traced over the ML tree reconstructed from the D2-D3 of the $28 S$ rRNA gene sequence alignment. The five characters consisted of the following states: (1) tail tip annulated/ smooth; (2) shape of tail terminus bluntly pointed/ bluntly rounded/hemispherical/round/filiform; (3) shape of tail clavate/conoid/cylindrical/subclavate/subcylindrical/ pointed conoid /filiform; (4) stylet knob inclination anterior/lateral/posterior; (5) shape of lip region continuous/offset. The most representative value for each character was considered for the morphological matrix. The criterion of parsimony was used to optimize character state evolution on the ML tree using MESQUITE 2.73 (Maddison \& Maddison, 2010).

RESULTS

SPECIES IDENTIFICATION AND DELIMITING

Integrating traditional morphological taxonomic characters and molecular criteria, we distinguished 19 valid species within the studied samples: Bitylenchus brevilineatus (Williams, 1960) Jairajpuri, 1982; Bitylenchus hispaniensis sp. nov., Bitylenchus iphilus Minagawa, 1995; Bitylenchus maximus (Allen, 1955) Siddiqi, 1986; Bitylenchus ventrosignatus (Tobar-Jiménez, 1969) Jairajpuri, 1982; Dolichodorus mediterraneus Jiménez-Guirado, Murillo Navarro, Liébanas, Landa \& Castillo, 2007; Paratrophurus bhutanensis (Ganguly, Lal \& Procter, 2004) Andrássy, 2007; Paratrophurus loofi Arias, 1970; Paratrophurus striatus Castillo, Siddiqi \& Gómez-Barcina, 1989; Trophurus imperialis Loof, 1956; Tylenchorhynchus aduncus de Guiran, 1967; Tylenchorhynchus agri Ferris, 1963, Tylenchorhynchus annulatus (Cassidy, 1930) Golden, 1971; Tylenchorhynchus clarus Allen, 1955; Ty. claytoni Steiner, 1937; Tylenchorhynchus leviterminalis Siddiqi, Mukherjee \& Dasgupta, 1982; Tylenchorhynchus mediterraneus sp. nov., Tylenchorhynchus thermophilus Golden, Baldwin \& Mundo-Ocampo, 1995, Tylenchorhynchus zeae Sethi \& Swarup, 1968; and an unidentified Telotylenchus species. This Telotylenchus population could not be identified to species level because
the sample did not contain a sufficient number of females for morphological identification and determination of their taxonomic status. Although most of the samples taken from soil examined in this study were monospecific, one sample from Niebla, Huelva, Spain, on the rhizosphere of a fig tree contained a mixture of two species (Siddiqi 2000). The two new taxa were measured, described, and illustrated under LM and SEM (Figs 1-6, Tables 2-6), whereas brief descriptions and illustrations (Supporting Information Figs S1-S17) and morphometric values (Tables S1-S7) are given for the populations of the 15 previously described Telotylenchidae species.

SYSTEMATICS

Genus Bitylenchus Filipjev, 1934

Bitylenchus hispaniensis sp. NOV.

(Figs 1-3, TABLES 2-3)
Holotype: Female extracted from soil samples collected from the rhizosphere of wild olive (Olea europaea ssp. silvestris), in Córdoba, Córdoba province, Spain, by P. Castillo, mounted in pure glycerine, and deposited in the USDA Nematode collection, Beltsville, Maryland (collection number T-416t).

Paratypes: Female paratypes extracted from soil samples collected from the rhizosphere of wild olive (Olea europaea ssp. silvestris), in Córdoba, Córdoba province, Spain, were deposited in the following nematode collections: the USDA Nematode collection, Beltsville, Maryland (collection numbers T-6233p to T-6248p); and the Nematode collection of the Department of Nematology, Landbouwhogeschool, Wageningen, the Netherlands (collection number OL32-4).

Etymology: The specific epithet refers to the geographical origin and is derived from the Latin hispaniensis $=$ Spanish, from Spain.

Description of female: Body arcuate to open C shape after heat fixation, no longitudinal striae or ridges outside lateral fields. Body annuli distinct but fine, 1.0$1.5 \mu \mathrm{~m}$ wide around mid-body. Lateral fields originating at the level of the conus of the stylet and extending up to hyaline region of tail to tail terminus, with four incisures, outer two incisures areolated. Lip region high, rounded, almost continuous to body contour, 7.2 ± 0.3 (6.5-7.5) $\mu \mathrm{m}$ wide, 3.6 ± 0.3 (3.0-4.0) $\mu \mathrm{m}$ wide; with five to seven annuli. SEM observations show labial plate slightly squarish in outline, fused with labial sectors, bordering the amphidial apertures, small rounded labial disc and an oval oral opening surrounded by six labial papillae, labial disc with six raised papillae or prongs/ lips (Fig. 3A, B). Stylet moderately strong, shaft and
conus equally long; knobs laterally to posteriorly directed. Dorsal gland orifice about $2.5 \mu \mathrm{~m}$ long behind stylet base. Median pharyngeal bulb oblong, basal bulb pyriform. Cardia well developed. Nerve ring located at $83.1 \pm 5.6(73.0-95.0) \mu \mathrm{m}$ from anterior end. Hemizonid usually just two to three annuli anterior to excretory pore, 1.0-1.5 annuli wide. Lateral canals (intestinal fasciculi) present in the intestinal region, often extending to the tail terminus. Vulva a transverse slit slightly posterior to the middle of the body and distinctly protruding. Epiptygma absent. Reproductive system amphidelphic, didelphic; anterior and posterior ovaries equally developed. Spermatheca rounded, filled with rounded spermatozoa. Tail bluntly rounded hemispherical to clavate, tail terminus annulated. Phasmids located slightly anterior to middle of the tail. Postanal extension of intestine absent.

Description of male: Abundant, morphologically similar to female except for sexual characters, and body in posterior region usually more curved than in female. Gubernaculum well developed, half of the spicule length. Tail terminus conoid-pointed, bursa extending to the tail terminus.

Diagnosis: Bitylenchus hispaniensis sp. nov. is characterized by a median body length ($548-790 \mu \mathrm{~m}$), a high, rounded, almost continuous lip region with five to seven annuli, stylet moderately strong, $15.5-18.5 \mu \mathrm{~m}$ long with laterally to posteriorly directed knobs, lateral fields with four incisures, outer two crenate, lateral canals (intestinal fasciculi) present in the intestinal region, tail bluntly rounded with a hemispherical to clavate terminus, phasmids located slightly anterior to middle of the tail, and postanal extension of intestine absent. Specific D2-D3, ITS, and $18 S r R N A$ sequences were deposited in GenBank with accession numbers KJ461544-KJ461548, KJ461576-KJ461578, and KJ461608-KJ461609, respectively.

Genus Tylenchorhynchus CobB, 1913

Tylenchorhynchus mediterraneus sp. nov.

> (FigS 4-6, TABLES 4-6)

Holotype: Female extracted from soil samples collected from the rhizosphere of grapevine (Vitis vinifera), in Jerez de la Frontera, Cádiz, Spain, by P. Castillo, mounted in pure glycerine, and deposited in the USDA Nematode collection, Beltsville, Maryland (collection number T-640t).

Paratypes: Female paratypes extracted from soil samples collected from the rhizosphere of grapevine (Vitis

Figure 1. Line drawings of Bitylenchus hispaniensis sp. nov. A, female pharyngeal region; B, vulval region showing part of gonads and spermatheca; C, female lip region; D, details of lip region showing oral disc (en face view); E, F, male tails showing spicules and gubernaculum; G-J, female tails, with H and I showing intestinal fasciculi/sinuous canals present and extending back to tail, and J with areolated lateral fields and phasmid in the middle.

Figure 2. Photomicrographs of Bitylenchus hispaniensis sp. nov. A, whole body of female and male; B, female pharyngeal region; C, female lip region; D, vulval region; E, female tails; F, male tail; G, lateral fields at mid-body. Scale bars: $\mathrm{A}=50 \mu \mathrm{~m}, \mathrm{~B}, \mathrm{E}=10 \mu \mathrm{~m} ; \mathrm{C}, \mathrm{D}, \mathrm{G}=5 \mu \mathrm{~m} ; \mathrm{F}=20 \mu \mathrm{~m}$.
vinifera), in Jerez de la Frontera, Cádiz, Spain, were deposited in the following nematode collections: the USDA Nematode collection, Beltsville, Maryland (collection numbers T-6249p to T-6264p); and the Nematode collection of the Department of Nematology, Landbouwhogeschool, Wageningen, the Netherlands (collection number VIDV-5).

Etymology: The specific epithet refers to the geographical origin and is derived from the Latin mediterraneus $=$ from the Mediterranean Basin.

Description of female: Body ventrally arcuate after fixation, no longitudinal striae or ridges outside lateral fields. Body annuli distinct but fine, $1.0-1.5 \mu \mathrm{~m}$ wide around mid-body. Lateral fields originating at the level of the conus of the stylet and extending up to hyaline region of tail to tail terminus, with four incisures, areolated throughout the body. Lip region hemispherical, offset by a constriction, with five to seven annuli; lip sclerotization weakly developed. The en face view (SEM) observations revealed a labial disc flattened laterally, dorsally and ventrally, resulting in a squarish

Figure 3. Scanning electron microscope photographs of Bitylenchus hispaniensis sp. nov. A, female lip region; B, en face view showing oral (oa) and amphidial (am) apertures; C, lateral fields at mid-body; D , E , female tails showing anus (a) and phasmid (ph); F, male tail showing spicules (sp). Scale bars: A, C $=10 \mu \mathrm{~m} ; \mathrm{B}=5 \mu \mathrm{~m} ; \mathrm{D}-\mathrm{F}=20 \mu \mathrm{~m}$.
pattern, margins of labial disc interrupted laterally by amphidial openings (Fig. 6B, C). Oral aperture slitlike, orientated dorsoventrally with three papillae on each side parallel to long axis (Fig. 6B, C). Stylet moderately strong, shaft and conus equally long; knobs rounded and posteriorly directed. DGO about 2.5 to $3 \mu \mathrm{~m}$ behind stylet base. Median pharyngeal bulb oblong to rounded, $16-18 \mu \mathrm{~m}$ long, basal bulb $55-60 \mu \mathrm{~m}$ long, pyriform or extending back over the intestine. Hemizonid usually just four to five annuli anterior to excretory pore, one to three annuli wide. Vulva a transverse slit slightly posterior to the middle of the body and distinctly protruding, most of the specimens had loose cuticle just above the vulval area. Epiptygma absent. Reproductive system amphidelphic, didelphic; anterior and posterior ovaries equally developed. Spermatheca rounded, filled with rounded spermatozoa. Tail conoid to cylindrical straight, with 42-81 annuli, tail terminus rounded, annulated. Phasmids located slightly anterior to middle of the tail. Postanal extension of intestine absent.

Description of the male: Abundant, morphologically similar to female except for sexual characters, and body in posterior region usually more curved than in female. Gubernaculum well developed, half of the spicule length. Tail terminus pointed.

Diagnosis: Tylenchorhynchus mediterraneus sp. nov. is characterized by a long body ($850-1040 \mu \mathrm{~m}$), a lip region hemispherical, offset by a constriction, with five to seven annuli, stylet moderately strong, $19.0-22.0 \mu \mathrm{~m}$ long with laterally to posteriorly directed rounded knobs, lateral fields with four incisures, areolated throughout the body, most of the specimens had loose cuticle just above the vulval area, tail conoid to cylindrical, straight, with 42-81 annuli, tail terminus rounded, annulated, phasmids located slightly anterior to middle of the tail, and postanal extension of intestine absent. Specific D2D3, ITS, and $18 S$ rRNA sequences were deposited in GenBank with accession numbers KJ461553-KJ461558, KJ461584-KJ461587, and KJ461613-KJ461616, respectively.
Table 2. Morphometrics of paratypes and several populations of Bitylenchus hispaniensis sp. nov. from southern Spain*

Locality host-plant	Córdoba, Córdoba, Spain, wild olive			Castro del Río, Córdoba, Spain, olive		Albanchez, Jaén, Spain, olive		Bonares, Huelva, Spain olive,	
	Holotype	Paratype females	Paratype males	Females	Males	Females	Males	Females	Males
n		7	10	5	5	10	6	6	3
L	675.0	662 ± 38.4 (612-732)	$640 \pm 60.9(548-760)$	658 ± 65.8 (582-717)	682 ± 31.1 (645-727)	711 ± 39.9 (657-765)	693 ± 67.7 (585-790)	$714 \pm 45.5(660-765)$	$691 \pm 57.8(627-740)$
a	30.6	30.4 ± 1.7 (27.8-32.5)	31.0 ± 3.9 (27.0-39.1)	31.3 ± 4.1 (27.6-35.9)	33.2 ± 2.1 (31.5-36.3)	32.0 ± 1.0 (30.9-34.0)	34.0 ± 2.8 (30.2-38.5)	32.5 ± 1.1 (30.9-34.0)	30.2 ± 1.5 (28.5-31.3)
b	5.6	6.0 ± 0.4 (5.6-6.8)	$6.1 \pm 0.7(5.4-7.8)$	6.0 ± 0.8 (4.9-6.8)	6.0 ± 0.5 (5.6-6.9)	6.2 ± 0.4 (5.7-6.9)	5.9 ± 0.7 (4.9-6.9)	6.3 ± 0.4 (5.7-6.8)	6.1 ± 0.4 (5.8-6.6)
c	15.0	14.2 ± 1.7 (11.8-16.8)	17.7 ± 1.4 (15.2-20.7)	14.8 ± 0.8 (13.8-15.8)	17.3 ± 2.1 (15.6-20.2)	15.0 ± 0.6 (14.2-15.9)	18.7 ± 1.4 (16.6-20.0)	15.2 ± 0.6 (14.4-15.9)	14.5 ± 1.3 (13.1-15.7)
c^{\prime}	2.7	2.9 ± 0.3 (2.5-3.3)	$2.9 \pm 0.3(2.4-3.3)$	$2.7 \pm 0.2(2.5-3.0)$	3.1 ± 0.3 (2.7-3.4)	$2.9 \pm 0.2(2.5-3.3)$	$2.9 \pm 0.2(2.7-3.2)$	$2.9 \pm 0.2(2.7-3.2)$	$2.8 \pm 0.1(2.7-2.8)$
V or T \%	54.0	54.6 ± 1.5 (52.5-57.0)	-	$56.0 \pm 1.0(55.0-57.0)$	-	55.0 ± 1.8 (53.0-57.5)	-	55.4 ± 1.7 (53.0-57.5)	-
Stylet length	17.5	16.1 ± 0.5 (15.5-17.0)	15.9 ± 0.8 (15.0-18.0)	$18.0 \pm 0.4(17.5-18.5)$	17.0 ± 1.0 (16.0-18.0)	17.8 ± 0.3 (17.5-18.0)	17.6 ± 0.6 (17.0-18.5)	17.7 ± 0.3 (17.5-18.0)	17.5 ± 0.5 (17.0-18.0)
Maximum body width	22.0	21.8 ± 1.0 (20.5-23.5)	20.7 ± 1.3 (18.0-23.0)	$21.2 \pm 2.2(20.0-25.0)$	20.6 ± 1.5 (19.0-23.0)	$22.6 \pm 1.2(20.0-24.0)$	20.4 ± 1.5 (18.0-22.0)	$22.0 \pm 1.2(20.0-23.0)$	22.8 ± 1.0 (22.0-24.0)
Pharynx length	120.0	$\begin{aligned} & 110.0 \pm 6.5 \\ & \quad(100.0-120.0) \end{aligned}$	$\begin{aligned} & 105.4 \pm 8.2 \\ & \quad(90.0-120.0) \end{aligned}$	$\begin{aligned} & 110.2 \pm 9.0 \\ & \quad(103.0-120.0) \end{aligned}$	$\begin{aligned} & 114.0 \pm 5.5 \\ & \quad(105.0-120.0) \end{aligned}$	$\begin{aligned} & 114.6 \pm 6.5 \\ & \quad(105.0-122.0) \end{aligned}$	$\begin{aligned} & 117.0 \pm 4.5 \\ & \quad(110.0-122.0) \end{aligned}$	$\begin{aligned} & 114.0 \pm 6.4 \\ & \quad(105.0-122.0) \end{aligned}$	$\begin{aligned} & 113.0 \pm 8.5 \\ & \quad(105.0-122.0) \end{aligned}$
Anterior end to excretory pore	88.0	89.7 ± 3.9 (85.0-95.0)	-	97.0 ± 5.7 (90.0-103.0)	$97.0 \pm 4.5(90.0-100.0)$	$102.3 \pm 7.5(92.0-120.0)$	98.2 ± 3.8 (92.0-102.0)	103.7 ± 5.8 (98.0-114.0)	96.3 ± 7.4 (88.0-102.0)
Anal body width	17.0	16.1 ± 1.4 (13.5-17.5)	$12.8 \pm 0.8(12.0-15.0)$	16.5 ± 2.8 (13.5-20.0)	$12.9 \pm 0.2(12.6-13.0)$	$16.6 \pm 1.8(14.0-20.0)$	12.8 ± 1.0 (12.0-14.5)	$16.3 \pm 1.5(14.0-18.0)$	$17.3 \pm 1.2(16.0-18.0)$
Tail length	45.0	47.4 ± 6.3 (37.5-57.0)	36.6 ± 5.6 (30.0-50.0)	44.6 ± 5.5 (38.0-50.0)	39.8 ± 4.1 (35.0-44.0)	47.4 ± 3.2 (43.0-52.0)	37.1 ± 3.3 (32.5-40.0)	47.0 ± 2.8 (44.0-51.0)	47.7 ± 2.5 (45.0-50.0)
Tail annuli	54	55.1 ± 8.1 (40-66)	-	$48.8 \pm 5.9(40-56)$	-	52.1 ± 6.6 (45-63)	-	51.5 ± 5.0 (46-58)	52.3 ± 5.1 (48-58)
Spicule	-	-	25.3 ± 1.8 (23.0-30.0)	-	25.2 ± 1.5 (23.0-27.0)	-	25.3 ± 0.8 (24.0-26.0)	-	25.0 ± 1.0 (24.0-26.0)
Gubernaculum	-	-	11.4 ± 1.6 (10.0-15.0)	-	11.3 ± 0.6 (11.0-12.0)	-	12.5 ± 0.9 (11.0-13.5)	-	12.3 ± 0.6 (12.0-13.0)

[^2]*Measurements are in $\mu \mathrm{m}$ and in the form: mean $\pm \mathrm{SD}$ (range).
Table 3. Morphometrics of several populations of Bitylenchus hispaniensis sp. nov. from southern Spain*

Locality host-plant	El Saucejo, Sevilla, Spain, olive		Montilla, Córdoba, Spain, grapevine		Génave, Jaén, Spain, olive	
	Females	Males	Females	Males	Females	Males
n	6	2	2	2	2	2
L	716 ± 44.4 (633-760)	$683 \pm 31.8(660-705)$	676 ± 26.9 (657-695)	683 ± 75.7 (630-737)	687 ± 24.7 (670-705)	$701 \pm 50.9(585-790)$
a	31.6 ± 0.2 (31.3-32.0)	$32.2 \pm 1.2(31.3-33.0)$	$31.9 \pm 1.4(30.9-32.9)$	31.4 ± 0.1 (31.4-31.5)	32.4 ± 1.5 (31.3-33.5)	30.5 ± 1.3 (29.6-31.4)
b	$6.4 \pm 0.4(5.8-6.9)$	$6.0 \pm 0.4(5.8-6.3)$	$5.7 \pm 0.0(5.7-5.7)$	$6.1 \pm 0.1(6.0-6.1)$	6.4 ± 0.3 (6.2-6.6)	$6.0 \pm 0.4(5.8-6.3)$
c	14.7 ± 0.6 (14.2-15.7)	$15.2 \pm 0.7(14.7-15.7)$	$15.5 \pm 0.4(15.3-15.8)$	$14.1 \pm 0.1(14.0-14.2)$	$14.9 \pm 0.2(14.7-15.0)$	14.0 ± 0.2 (13.9-14.2)
c^{\prime}	$2.8 \pm 0.2(2.5-3.0)$	$2.9 \pm 0.1(2.8-3.0)$	$2.8 \pm 0.1(2.8-2.9)$	3.0 ± 0.0 (3.0-3.0)	3.1 ± 0.2 (2.9-3.3)	$2.9 \pm 0.1(2.8-3.0)$
V or T \%	54.9 ± 1.5 (53.0-57.5)	-	$55.5 \pm 2.1(54.0-57.0)$	$-\quad$	$56.5 \pm 0.7(56.0-57.0)$	$-\quad$
Stylet length	17.8 ± 0.3 (17.5-18.0)	$17.0 \pm 1.4(16.0-18.0)$	$17.8 \pm 0.4(17.5-18.0)$	$17.0 \pm 1.4(16.0-18.0)$	$17.0 \pm 0.7(16.5-17.5)$	$17.3 \pm 0.4(17.0-17.5)$
Maximum body width	$22.7 \pm 1.4(20.0-24.0)$	$21.3 \pm 1.8(20.0-22.5)$	$21.3 \pm 1.8(20.0-22.5)$	21.8 ± 2.5 (20.0-23.5)	$21.3 \pm 1.8(20.0-22.5)$	$23.0 \pm 0.7(22.5-23.5)$
Pharynx length	112.8 ± 9.7 (98.0-122.0)	113.5 ± 12.0 (105.0-122.0)	$118.5 \pm 4.9(115.0-122.0)$	112.5 ± 10.6 (105.0-120.0)	$108.0 \pm 8.5(102.0-114.0)$	$116.0 \pm 1.4(115.0-117.0)$
Anterior end to excretory pore	99.5 ± 8.1 (87.0-107.0)	$94.0 \pm 2.8(92.0-96.0)$	100.0 ± 7.1 (95.0-105.0)	102.5 ± 3.5 (100.0-105.0)	90.5 ± 2.1 (89.0-92.0)	$101.5 \pm 2.1(100.0-103.0)$
Anal body width	$17.3 \pm 1.7(15.0-20.0)$	$15.5 \pm 0.7(15.0-16.0)$	15.5 ± 0.7 (15.0-16.0)	$16.3 \pm 1.8(15.0-17.5)$	15.0 ± 1.4 (14.0-16.0)	$17.3 \pm 0.4(17.0-17.5)$
Tail length	48.7 ± 3.3 (44.0-52.0)	46.0 ± 1.4 (45.0-47.0)	43.5 ± 0.7 (43.0-44.0)	48.5 ± 4.9 (45.0-52.0)	46.3 ± 1.1 (45.5-47.0)	$50.0 \pm 2.8(48.0-52.0)$
Tail annuli	54.8 ± 6.0 (48-63)	$-\quad$	$46.0 \pm 1.4(45-47)$	-	51.5 ± 6.4 (47-56)	-
Spicule	-	$25.0 \pm 1.4(24.0-26.0)$	-	$24.5 \pm 0.7(24.0-25.0)$	-	25.5 ± 0.7 (25.0-26.0)
Gubernaculum	-	$13.0 \pm 1.4(12.0-14.0)$	-	12.5 ± 0.7 (12.0-13.0)	-	13.5 ± 0.7 (13.0-14.0)

[^3]

Figure 4. Line drawings of Tylenchorhynchus mediterraneus sp. nov. A, female pharyngeal region; B, vulval region showing part of gonads and spermatheca; C , female lip region; D , details of lip region showing oral disc (en face view); E, F, male tails showing spicules and gubernaculum; G-I, female tails, showing areolated lateral fields and phasmid in the middle.

Figure 5. Photomicrographs of Tylenchorhynchus mediterraneus sp. nov. A, whole body of female and male; B, female pharyngeal region showing excretory pore (ep); C, female lip region showing stylet knobs (kn); D, vulval region; E-G, female tails showing anus (a) and phasmid (ph); H, male tail showing spicules (sp) and gubernaculum (gb). Scale bars: $\mathrm{A}=50 \mu \mathrm{~m}, \mathrm{~B}, \mathrm{D}=20 \mu \mathrm{~m} ; \mathrm{C}, \mathrm{E}-\mathrm{H}=10 \mu \mathrm{~m}$.

Morphology and morphometrics of Telotylenchidae and other known species

 (Figs S1-S19, Tables S1-S8)
Dolichodorus mediterraneus Jiménez-Guirado, Murillo Navarro, Liébanas, Landa \& Castillo, 2007

 (Table S1)As the morphology of the new Spanish population of D. mediterraneus from Tarifa, Cádiz, found on the
rhizosphere of wild olive is almost identical to that published for this species in the original description, no morphological pictures of this new population are provided here. Discovery of this new population on wild olive constitutes a new record of this species for Spain and a new host-plant record. Minor morphometric differences of this population from the original description include stylet length ($83.0-99.0$ vs. $78.0-106.5 \mu \mathrm{~m}$) and gubernaculum

Figure 6. Scanning electron microscope photographs of Tylenchorhynchus mediterraneus sp. nov. A, female anterior region; B, C, en face view showing oral (oa) and amphidial (am) apertures; D, lateral fields at mid-body; E, female tail showing anus (a). Scale bars: $\mathrm{A}=20 \mu \mathrm{~m} ; \mathrm{B}, \mathrm{C}, \mathrm{D}=10 \mu \mathrm{~m} ; \mathrm{E}=20 \mu \mathrm{~m}$.
(17.0-22.0 vs. $14.0-22.0 \mu \mathrm{~m}$) (Jiménez-Guirado et al., 2007).

Paratrophurus bhutanensis (Ganguly et al., 2004) Andrássy, 2007 (Figs S1, S2; Table S1)
The Spanish population from Niebla, Huelva, found on the rhizosphere of a fig tree was characterized by having a straight to C -shaped body with distinct annuli, lip region continuous with a shallow depression, conoid to rounded with four to five annuli, and stylet delicate with rounded to slightly anteriorly directed knobs. The SEM en face view revealed a squarish labial disc bordering the amphidial apertures, with an oval oral opening surrounded by six raised projections, prongs, or labial papillae and that the anterior-most cephalic annulus is divided into six labial sectors (Fig. S2AD). Lateral fields with four incisures with the outer ones areolated; spermatheca round with rounded sperms. Postrectal intestinal sac absent. Tail 2.3-3.3 anal body diameters long, cylindrical, clavate with broadly rounded annulated terminus bearing 16-25 annuli. Males morphologically similar to female except for sexual characters, and body in posterior region usually more curved than in female, bursa encircling the entire tail. Spicules and gubernaculum well developed, measuring 2022.5 and $9-11 \mu \mathrm{~m}$, respectively.

The morphology and morphometrics of the Spanish population are coincident with the original species description by (Ganguly et al., 2004), except for minor intraspecific differences in the shape of lip region (conoid to rounded with a shallow depression vs. continuous, conoid-rounded), slightly longer stylet [20.1 (20.0-
21.0) vs. (18.0-20.0) $\mu \mathrm{m}$], lower c ratio [body length/ tail length; 17.1 (15.5-19.4) vs. (16.0-27.0)], higher c' ratio [tail length/body width at anus; 2.4 (2.2-2.7) vs. (1.5-2.4)], slightly shorter spicules (20.0-22.5 vs. $20-$ $24 \mu \mathrm{~m}$), and longer gubernaculum (9.0-11.0 vs. $6-9 \mu \mathrm{~m}$) (Ganguly et al., 2004).

This species was described from East Bhutan and this finding represents the second world record after the original description and a new country record for Spain, as well as a new host record for fig tree.

Paratrophurus loofi Arias, 1970 (Table S1)

The Spanish population from Coto Ríos, Jaén, on the rhizosphere of an ash tree was characterized by a cylindrical body, narrowing at anterior end. Lip region conoid-rounded without distinct annuli. Stylet conus longer than shaft, knobs $2.5-3.5 \mu \mathrm{~m}$. Pharynx with median bulb oval, $10.1 \mu \mathrm{~m}$ long and isthmus about three times as long as median bulb. Vulva transverse, without epiptygma, ovaries outstretched with rounded spermatheca. Tail cylindrical, terminus striated with hyaline region $9-11 \mu \mathrm{~m}$ long. Male morphologically similar to female, apart from sexual characters.

As the morphology of this population is almost identical to that published for this species in the original description, no morphological pictures of these new population are provided here. Measurements of the studied population were similar to those given by Arias (1970) and Castillo et al. (1989), except for shorter spicules and gubernaculum ($20-24$ vs. $26-27 \mu \mathrm{~m}$ and $10-12$ vs. $12-15 \mu \mathrm{~m}$, respectively). This species has also been
Table 4. Morphometrics of paratypes and several populations of Tylenchorhynchus mediterraneus sp. nov. from southern Spain*

Locality host-plant	Jerez de la Frontera, Cádiz, Spain, grapevine			Marchena, Sevilla, Spain, olive		Huevar, Huelva, Spain, olive		Almonte, Huelva, Spain, stone pine	
	Holotype	Paratype females	Paratype males	Females	Males	Females	Males	Females	Males
n	1	9	3	6	3	12	6	2	2
L	995.0	1064 ± 109.2 (910-1220)	1005 ± 37.7 (965-1040)	$852 \pm 53.5(815-960)$	906 ± 94.0 (800-980)	$897 \pm 30.0(842-942)$	833 ± 59.3 (745-900)	953 ± 68.6 (905-1002)	913 ± 40.3 (885-942)
a	27.5	38.4 ± 3.7 (34.3-45.3)	39.2 ± 1.8 (37.1-40.4)	37.5 ± 0.8 (36.3-38.4)	40.3 ± 3.2 (38.1-42.6)	42.9 ± 1.5 (40.8-46.6)	41.0 ± 2.8 (37.3-44.5)	$42.4 \pm 1.7(41.1-43.6)$	42.5 ± 0.5 (42.1-42.8)
b	5.6	5.8 ± 0.4 (5.1-6.3)	$5.1 \pm 0.2(4.9-5.3)$	5.8 ± 0.3 (5.4-6.2)	6.0 ± 0.4 (5.8-6.3)	5.7 ± 0.3 (5.2-6.2)	5.5 ± 0.6 (4.9-6.3)	5.8 ± 0.1 (5.7-5.8)	$5.6 \pm 0.3(5.4-5.8)$
c	16.0	17.2 ± 1.2 (16.3-20.0)	18.9 ± 1.7 (17.5-20.8)	18.1 ± 1.9 (15.3-20.6)	18.9 ± 0.9 (18.2-19.5)	$15.9 \pm 1.2(14.6-18.1)$	17.1 ± 2.0 (13.5-19.5)	15.6 ± 1.5 (14.6-16.7)	17.1 ± 2.4 (15.4-18.8)
c^{\prime}	3.6	3.3 ± 0.3 (3.0-3.7)	-	2.8 ± 0.1 (2.7-3.0)	3.2 ± 0.04 (3.1-3.2)	3.9 ± 0.3 (3.5-4.6)	$3.7 \pm 0.4(3.4-4.0)$	3.9 ± 0.1 (3.9-4.0)	4.1 ± 0.8 (3.5-4.6)
V or T \%	51.0	52.4 ± 1.6 (48.0-54.0)	-	$54.4 \pm 1.4(53.0-56.0)$	-	52.3 ± 1.5 (50.0-55.0)	-	52.5 ± 0.7 (52.0-53.0)	-
Stylet length	20.5	21.1 ± 0.5 (21.0-22.0)	21.3 ± 0.6 (21.0-22.0)	20.2 ± 0.4 (20.0-21.0)	$20.9 \pm 1.2(20.0-22.0)$	19.1 ± 0.8 (18.0-20.0)	$18.4 \pm 0.9(17.5-20.0)$	$20.5 \pm 0.7(20.0-21.0)$	19.5 ± 0.7 (19.0-20.0)
Maximum body width	27.5	28.3 ± 1.6 (26.0-30.0)	25.7 ± 0.6 (25.0-26.0)	22.9 ± 1.3 (21.5-25.0)	$21.5 \pm 0.7(21.0-22.0)$	20.9 ± 0.9 (19.0-22.0)	20.3 ± 0.5 (20.0-21.0)	$22.5 \pm 0.7(22.0-23.0)$	$21.5 \pm 0.7(21.0-22.0)$
Pharynx length	177.0	$\begin{aligned} & 187.3 \pm 9.0 \\ & \quad(170.0-195.0) \end{aligned}$	$\begin{aligned} & 193.5 \pm 2.1 \\ & \quad(192.0-195.0) \end{aligned}$	$\begin{aligned} & 149.3 \pm 6.8 \\ & \quad(142.0-155.0) \end{aligned}$	$\begin{aligned} & 143.5 \pm 6.4 \\ & \quad(139.0-148.0) \end{aligned}$	$\begin{aligned} & 157.7 \pm 5.3 \\ & \quad(150.0-170.0) \end{aligned}$	$\begin{aligned} & 153.4 \pm 11.4 \\ & \quad(135.0-165.0) \end{aligned}$	$\begin{aligned} & 165.0 \pm 9.9 \\ & \quad(158.0-172.0) \end{aligned}$	$\begin{aligned} & 163.5 \pm 2.1 \\ & \quad(162.0-165.0) \end{aligned}$
Anterior end to excretory pore	135.0	$\begin{aligned} & 142.5 \pm 8.7 \\ & \quad(135.0-150.0) \end{aligned}$	-	-	-	$\begin{aligned} & 118.2 \pm 2.0 \\ & \quad(115.0-120.0) \end{aligned}$	-	$\begin{aligned} & 121.0 \pm 4.2 \\ & \quad(118.0-124.0) \end{aligned}$	$\begin{aligned} & 116.5 \pm 2.1 \\ & \quad(115.0-118.0) \end{aligned}$
Anal body width	17.5	$18.9 \pm 1.1(17.0-20.0)$	-	15.5 ± 0.8 (15.0-17.0)	$14.5 \pm 0.7(14.0-15.0)$	15 ± 1.0 (13.0-16.0)	$13.5 \pm 0.7(13.0-14.0)$	$15.5 \pm 0.7(15.0-16.0)$	13.3 ± 1.1 (12.5-14.0)
Tail length	62.5	61.8 ± 6.1 (52.0-70.0)	53.3 ± 2.9 (50.0-55.0)	47.5 ± 4.6 (42.5-55.0)	46.0 ± 2.8 (44.0-48.0)	56.8 ± 3.8 ($50.0-62.0)$	49.4 ± 07 (41.0-60.0)	$61.0 \pm 1.4(60.0-62.0)$	53.8 ± 5.3 (50.0-57.5)
Tail annuli	65	69.0 ± 6.4 (61.0-81.0)	-	53.2 ± 4.8 (46.0-59.0)	-	56.0 ± 8.8 (45-77)	-	62.0 ± 8.5 (56.0-68.0)	51.0 ± 8.5 (45.0-57.0)
Spicule	-	-	27.7 ± 0.8 (27.0-28.5)	-	$22.5 \pm 3.5(20.0-25.0)$	-	24.3 ± 0.5 (24.0-25.0)	-	27.5 ± 0.7 (27.0-28.0)
Gubernaculum	-	-	15.0 ± 0.0 (15.0-15.0)	-	13.0 ± 2.8 (11.0-15.0)	-	$12.4 \pm 0.2(12.0-12.5)$	-	15.5 ± 0.7 (15.0-16.0)

[^4]Table 5. Morphometrics of several populations of Tylenchorhynchus mediterraneus sp. nov. from southern Spain*

Locality host-plant	Benalup-Casas Viejas, Cádiz, Spain, pomelo		Montemayor, Córdoba, Spain, grapevine		Rota, Cádiz, Spain, sunflower		La Rambla, Córdoba, Spain, grapevine	
	Females	Males	Females	Males	Females	Males	Females	Males
n	2	2	5	3	10	5	2	2
L	$886 \pm 19.8(872-900)$	883 ± 2.1 (882-885)	849 ± 75.6 (791-980)	868 ± 17.6 (850-885)	$949 \pm 54.2(867-1040)$	$944 \pm 37.7(900-1040)$	873 ± 44.5 (842-905)	864 ± 30.4 (842-885)
a	43.2 ± 0.5 (42.9-43.6)	44.3 ± 3.2 (42.0-46.6)	46.5 ± 3.0 (42.5-49.4)	43.4 ± 0.9 (42.5-44.3)	30.9 ± 3.3 (25.8-37.8)	31.3 ± 2.3 (28.9-34.1)	42.6 ± 0.7 (42.1-43.1)	44.3 ± 3.2 (42.1-46.6)
b	5.5 ± 0.3 (5.3-5.7)	$5.4 \pm 0.2(5.2-5.5)$	$5.4 \pm 0.3(5.2-5.9)$	$5.6 \pm 0.1(5.5-5.7)$	$5.6 \pm 0.3(5.1-6.1)$	$6.0 \pm 0.7(5.3-7.2)$	5.5 ± 0.3 (5.3-5.7)	$5.6 \pm 0.1(5.5-5.7)$
c	$15.1 \pm 0.1(15.0-15.2)$	15.0 ± 0.5 (14.7-15.4)	$16.9 \pm 1.1(15.8-18.7)$	18.0 ± 0.8 (17.4-18.8)	17.6 ± 1.6 (15.1-19.1)	18.2 ± 1.8 (15.0-19.3)	15.7 ± 1.6 (14.6-16.8)	16.1 ± 1.0 (15.4-16.8)
c^{\prime}	3.9 ± 0.1 (3.8-4.0)	4.3 ± 0.4 (4.0-4.6)	3.8 ± 0.3 (3.4-4.1)	-	$2.4 \pm 0.2(2.0-2.7)$	$2.7 \pm 0.0(2.7-2.7)$	3.7 ± 0.3 (3.5-3.9)	4.1 ± 0.8 (3.5-4.6)
V or T \%	51.5 ± 0.7 (51.0-52.0)	-	52.7 ± 1.6 (51.0-55.0)	-	$53.9 \pm 1.0(52.5-55.0)$	-	$52.0 \pm 1.4(51.0-53.0)$	-
Stylet length	$18.3 \pm 0.4(18.0-18.5)$	18.8 ± 0.4 (18.5-19.0)	18.7 ± 0.8 (18.0-20.0)	19.7 ± 0.6 (19.0-20.0)	22.5 ± 0.3 (22.0-23.0)	$22.1 \pm 0.4(21.5-22.5)$	19.5 ± 0.7 (19.0-20.0)	19.0 ± 0.0 (19.0-19.0)
Maximum body width	20.5 ± 0.7 (20.0-21.0)	20.0 ± 1.4 (19.0-21.0)	18.3 ± 1.6 (16.0-20.0)	20.0 ± 0.0 (20.0-20.0)	31.0 ± 3.2 (26.0-37.0)	$30.4 \pm 1.7(28.0-32.0)$	20.5 ± 0.7 (20.0-21.0)	19.5 ± 0.7 (19.0-20.0)
Pharynx length	161.0 ± 12.7 (152.0-170.0)	$165.0 \pm 7.1(160.0-170.0)$	156.0 ± 6.5 ($150.0-165.0$)	$155.0 \pm 7.1(150.0-160.0)$	171.0 ± 8.8 (160.0-190.0)	159.0 ± 9.6 (145.0-170.0)	$160.0 \pm 0.0(160.0-160.0)$	$154.5 \pm 9.2(148.0-161.0)$
Anterior end to excretory pore	126.5 ± 7.8 (121.0-132.0)	$119.0 \pm 1.4(118.0-120.0)$	-	-	$138.0 \pm 4.5(135.0-145.0)$	134.2 ± 8.3 (120.0-140.0)	$117.5 \pm 3.5(115.0-120.0)$	$116.5 \pm 2.1(115.0-118.0)$
Anal body width	$15.0 \pm 0.0(15.0-15.0)$	$13.8 \pm 1.8(12.5-15.0)$	$13.1 \pm 1.7(12.0-16.0)$	-	22.1 ± 1.7 (19.0-25.0)	$17.5 \pm 0.0(17.5-17.5)$	$15.0 \pm 1.4(14.0-16.0)$	13.3 ± 1.1 (12.5-14.0)
Tail length	58.8 ± 1.8 (57.5-60.0)	58.8 ± 1.8 (57.5-60.0)	50.4 ± 6.7 (45.0-62.0)	48.3 ± 1.5 (47.0-50.0)	53.7 ± 5.6 (46.0-60.0)	$52.2 \pm 5.2(48.0-60.0)$	56.0 ± 8.5 ($50.0-62.0)$	53.8 ± 5.3 (50.0-57.5)
Tail annuli	61.5 ± 9.2 (55-68)	-	54.4 ± 6.1 (50.0-65.0)	-	49.8 ± 6.3 (42.0-60.0)	-	50.5 ± 7.8 (45.0-56.0)	-
Spicule	-	26.5 ± 0.7 (26.0-27.0)	-	24.2 ± 1.6 (23.0-26.0)	-	$27.6 \pm 1.0(26.0-28.5)$	-	25.5 ± 0.7 (25.0-26.0)
Gubernaculum	-	$14.5 \pm 0.7(14.0-15.0)$	-	11.8 ± 0.8 (11.0-12.5)	-	15.1 ± 0.7 (14.0-16.0)	-	15.5 ± 0.7 (15.0-16.0)

[^5]Table 6. Morphometrics of several populations of Tylenchorhynchus mediterraneus sp. nov. from southern Spain*

Locality host-plant	Tabernas, Almería, Spain, olive		Chucena, Huelva, Spain, olive	
	Females	Males	Females	Males
n	2	2	2	2
L	905 ± 14.1 (895-915)	$897 \pm 21.2(882-912)$	908 ± 47.4 (875-942)	910 ± 51.6 (874-947)
a	$44.2 \pm 0.8(43.6-44.8)$	40.8 ± 1.7 (39.7-42.0)	42.2 ± 0.8 (41.7-42.8)	42.3 ± 1.0 (41.6-43.0)
b	$5.6 \pm 0.1(5.5-5.7)$	$5.6 \pm 0.1(5.6-5.7)$	5.7 ± 0.1 (5.7-5.8)	5.7 ± 0.0 (5.7-5.8)
c	15.2 ± 0.3 (15.0-15.4)	15.6 ± 0.9 (14.9-16.3)	17.2 ± 2.3 (15.6-18.8)	15.0 ± 0.3 (14.8-15.3)
c^{\prime}	$4.0 \pm 0.2(3.8-4.1)$	3.8 ± 0.2 (3.7-4.0)	3.8 ± 0.3 (3.6-4.0)	3.9 ± 0.0 (3.9-3.9)
V \%	$52.0 \pm 1.4(51.0-53.0)$	-	51.5 ± 0.7 (51.0-52.0)	-
Stylet length	19.5 ± 0.7 (19.0-20.0)	18.3 ± 0.4 (18.0-18.5)	18.5 ± 0.7 (18.0-19.0)	19.3 ± 1.1 (18.5-20.0)
Maximum body width	20.5 ± 0.7 (20.0-21.0)	$22.0 \pm 1.4(21.0-23.0)$	$21.5 \pm 0.7(21.0-22.0)$	21.5 ± 0.7 (21.0-22.0)
Pharynx length	161.0 ± 6.4 (157.0-166.0)	159.5 ± 2.1 (158.0-161.0)	$158.0 \pm 5.7(154.0-162.0)$	$158.5 \pm 9.2(152.0-165.0)$
Anterior end to excretory pore	117.5 ± 0.7 (117.0-118.0)	$116.0 \pm 2.8(114.0-118.0)$	$118.0 \pm 5.7(114.0-122.0)$	$120.5 \pm 4.9(117.0-124.0)$
Anal body width	$15.0 \pm 1.4(14.0-16.0)$	$15.0 \pm 1.4(14.0-16.0)$	14.0 ± 0.0 (14.0-14.0)	15.5 ± 0.7 (15.0-16.0)
Tail length	59.5 ± 2.1 (58.0-61.0)	57.5 ± 2.1 (56.0-59.0)	$53.0 \pm 4.2(50.0-56.0)$	60.5 ± 2.1 (59.0-62.0)
Tail annuli	56.5 ± 0.7 (56-57)	-	52.0 ± 5.7 (48.0-56.0)	$-\quad$
Spicule	-	$24.5 \pm 0.7(24.0-25.0)$	-	$24.0 \pm 1.4(23.0-25.0)$
Gubernaculum	-	$14.5 \pm 0.7(14.0-15.0)$	-	$12.5 \pm 0.7(12.0-13.0)$

*Measurements are in $\mu \mathrm{m}$ and in the form: mean $\pm \mathrm{SD}$ (range).
L, body length; a, body length/maximum body width; b, body length/pharyngeal length; c, body length/tail length; c^{\prime}, tail length/ body width at anus; V, (distance from anterior end to vulva/body length) $\times 100$.
reported from Turkey (Saltukoglu, Geraert \& Coomans, 1976) and Bulgaria (Katalan-Gateva \& Tsoneva, 1982).

Paratrophurus striatus Castillo, Siddiqi \&

Gómez-Barcina, 1989 (Table S1)
Topotype specimens (females and males) of P. striatus collected at the type locality, in Arroyo Frío, Jaén, on black poplar studied under LM were identical to the type population (Table S1) described by Castillo et al. (1989). As this species has only been reported from the type locality, it should be considered an endemic of that area.

Trophurus imperialis Loof, 1956 (Table S2)

The Spanish population from Lebrija, Seville, on the rhizosphere of a grapevine was characterized by a body almost straight when relaxed, cylindrical, tapering anteriorly to a narrow, smooth lip region. Lateral fields $10-11 \mu \mathrm{~m}$ wide. Stylet with attenuated conus, shorter than shaft. DGO 2.0-3.5 $\mu \mathrm{m}$ from stylet base. Median bulb ovate, muscular. Cardia rounded, $4-7 \mu \mathrm{~m}$ long. Gonad monodelphic-prodelphic with a functional anterior branch and a postuterine sac. Tail cylindrical, with conoid smooth terminus having cuticle abnormally thickened, $10-15 \mu \mathrm{~m}$ long. Male morphologically similar to female, apart from sexual characters.

The morphological data for this population correspond well with previous descriptions of the species
(Loof, 1956; Castillo et al., 1991). This species has been reported from several European countries including the Netherlands (Loof, 1956), Poland (Brzeski, 1968), England (Siddiqi, 1973), Turkey (Saltukoglu et al., 1976), and Spain (Castillo et al., 1991).

Bitylenchus brevilineatus (Williams, 1960)

Jairajpuri, 1982 (Figs S3, S4; Table S2)
The Spanish population of B. brevilineatus from Villalba del Alcor found on eucalyptus was characterized by having a slightly ventrally arcuate to C-shaped body, and a set- off lip region that is broadly rounded with five to seven annuli. Transverse striae and additional longitudinal lines marking the cuticle were noted at the anterior end of the body. The SEM en face view revealed a squarish labial disc with an oval oral opening surrounded by six raised labial projections/papillae and that the anterior-most labial annulus is divided into six labial sectors (Fig. S4A-C). Labial disc slightly raised above medial lips, dumbbell-shaped in en face view. Conspicuous round amphidial apertures (Fig. S4C). Stylet delicate, measuring $15.0-17.0 \mu \mathrm{~m}$ long with rounded, posteriorly directed knobs. Lateral fields with four incisures regularly areolated (Fig. S4). Spermatheca rounded with round sperms. Phasmids located in the middle or posterior half of tail. Tail conoid about 2.63.5 times anal body diameter in length with bluntly rounded, smooth terminus bearing 30-48 annuli.

Males common, bursa encircling entire tail, spicules $22.5-27.5 \mu \mathrm{~m}$ long, gubernaculum $11.0-12.5 \mu \mathrm{~m}$ long.

The morphology and morphometrics of this new Spanish population are coincident with the previous species description of B. brevilineatus by Williams (1960), except for a slightly higher number of tail annuli.
According to Geraert (2011) this species was described from Mauritius and Uttar Pradesh, India (= Tylenchorhynchus indicus) (Siddiqi, 1961) and later also reported from South Africa (Kleynhans \& Heyns, 1984), India (Gupta \& Uma, 1985), Pakistan (Maqbool \& Shahina, 1987; Rashid \& Heyns, 1990), and Sudan (Zeidan \& Geraert, 1990).

Bitylenchus iphilus Minagawa, 1995 (Figs S5, S6; Table S5)

The Spanish population of B. iphilus from Villamanrique de la Condesa, Seville, on the rhizosphere of a cork oak was characterized by having a straight to slightly C-shaped body with a hemispherical, continuous to slightly offset lip region bearing five to six annuli. The lateral fields have four incisures and are areolated throughout the body. SEM revealed a lip region divided by shallow, hexaradial grooves, with the en face view revealing a squarish labial disc with an oval oral opening surrounded by six raised labial projections, prongs, or papillae and that the anterior-most labial annulus is divided into six labial sectors (Fig. S6A-D). The amphidial apertures are conspicuous (Fig. S6D). Stylet is thin with rounded, posteriorly directed knobs. Spermatheca round to oval with rounded sperms. Tail straight to slightly curved, 2.5-3.2 times anal body diameter in length, hemispherical to subhemispherical with a clavate to rounded terminus, bearing 35-43 annuli; tail terminus irregularly striated, usually rounded or truncate. Males common, morphologically similar to female except for sexual characters, and body in posterior region usually more curved than in female, bursa encircling the entire tail. Spicules and gubernaculum well developed, measuring 25 and $15 \mu \mathrm{~m}$, respectively. Tail terminus pointed.

The morphology and morphometrics of this Spanish population were coincident with the original species description from Hiroshima, Japan (Minagawa, 1995), and those given in the compendium of species of Tylenchorhynchus by Brzeski \& Dolinski (1998) and Handoo (2000), except for minor intraspecific differences in the number of tail annuli of females (35-43 vs. 24-41) and the female tail more broadly hemispherical to clavate with a truncate terminus. It is also close to Tylenchorhynchus ibericus and Tylenchorhynchus huesingi but differs from Ty. huesingi in tail shape and number of tail annuli and from Ty. ibericus in having a shorter stylet and body length, and in tail shape.

This record represents a new country record for Spain and a new host record for cork oak.

Bitylenchus maximus (Allen, 1955) Siddiqi, 1986
(Figs S7, S8, Table S6)
The Spanish populations of B. maximus, one from Andújar, Jaén, and the other from Niebla, Huelva, on the rhizospheres of olive and wild olive, respectively, were characterized by having a strong arcuate body that is often spiral-shaped. Lip region high to rounded, slightly offset by a constriction with six to seven annuli. SEM observations revealed a labial disc and an anterior lip annulus divided into six sectors, and longitudinal grooves on lip annuli behind amphids (Fig. S8A-C). Delicate stylet with small knobs, sloping posteriorly. Tail cylindrical to subcylindrical, occasionally clavate, with 32-41 annuli, tail terminus annulated. Males present, spicules $33-37 \mu \mathrm{~m}$, gubernaculum $15 \mu \mathrm{~m}$ in length.

The morphology and morphometrics of these Spanish populations are in close conformity with those given for this species by Allen (1955), Maqbool \& Shahina (1987), Handoo (2000), Yildiz et al. (2012), and Gómez Barcina et al. (1992).

This species was described from New York, USA, and later reported from various locations in North America, Europe, Pakistan (Maqbool \& Shahina, 1987), Spain (Gómez Barcina et al., 1992), north-western Turkey (Saltukoglu, 1974), and eastern Anatolian temperate pastures of Bingol, Turkey (Yildiz et al., 2012).

Bitylenchus ventrosignatus (Tobar-Jiménez, 1969) Jairajpuri, 1982 (Figs S9, S10, Table S6)
The Spanish population of B. ventrosignatus from a sandy soil at Bollullos par del Condado, Huelva, on the rhizosphere of grapevine was characterized by having wave-like structures present close to the vulva on the ventral side of the body (Figs S9, S10) and a slightly ventrally curved body without any longitudinal striations. Lip region spherical, well offset with three to five annuli and weakly sclerotized labial framework. In en face view, SEM observations revealed a labial disc fused with labial sectors, resulting in a squarish pattern with slight indentations on dorsal and ventral sides, and longitudinal grooves on lip annuli behind amphids, margins of labial disc interrupted laterally by amphidial openings (Fig. S10A-C). Posterior to labial disc, a continuous lip annulus, broader on lateral sides (Fig. S10C). Oral aperture slit-like, orientated dorsoventrally, with three papillae on each side parallel to long axis. Lateral fields with four incisures, areolated throughout the body. Stylet slender, with backward-directed knobs. Tail subcylindrical with 32-42 annuli, tail terminus conical with a smooth tip. Phasmid located in the anterior half of tail. Male morphologically similar to female except for sexual
characters, and body in posterior region usually more curved than in female, bursa encircling the entire tail. Spicules and gubernaculum well developed, measuring $20.0-22.5$ and $10-12 \mu \mathrm{~m}$, respectively. Tail terminus pointed.

The morphology and morphometrics of this population are coincident with the original description (Tobar-Jiménez, 1969), except for some minor variations in the number of annuli in the lip region and on the tail (three to five vs. four and $32-42$ vs. 2832, respectively). This species was described from Algarrobo, Malaga, Spain, and later reported from Turkey (Geraert, Zepp \& Borazanci, 1975). This is the second record of this species in Spain after the original description, also in southern Spain.

Tylenchorhynchus aduncus de Guiran, 1967

(Fig. S11, Table S1)
The Spanish population of Ty. aduncus from a sandy soil with Juncus acutus was characterized by an elongate-conoid to conical female tail with bluntly pointed to subdigitate, smoothly rounded terminus bearing 20-27 annuli (Fig. S11), lip region hemispherical, about $8.5 \mu \mathrm{~m}$ wide, body annuli without longitudinal lines outside the lateral fields, outer incisures of lateral fields areolated, lateral fields with four incisures. Males present, bursa covering the entire tail, spicules $25-27 \mu \mathrm{~m}$ long, gubernaculum $9-10 \mu \mathrm{~m}$ long with a distinct proximal end.

The morphology and morphometrics of this Spanish population are coincident with the original species descriptions by de Guiran (1967) from Montpellier, France, and Vovlas \& Cham (1981) from Torre Cane, Italy (Table S1). This species has been widely reported in Europe including in France, Italy, and Spain, and in Africa, in Algeria (de Guiran, 1967; Vovlas \& Cham, 1981; Ouanouki \& Mitiche, 1991; Peña-Santiago et al., 2003).

Tylenchorhynchus agri Ferris, 1963 (Fig. S12, Table S8)

The population of Ty. agri collected from dwarf date palm (Phenix roebelenii) in Lake Worth, Florida, USA, was characterized by having a ventrally arcuate body with a coarsely striated cuticle. Lip region continuous with body contour or separated by slight depression bearing three to four annuli. Labial framework moderately sclerotized with outer margins extending two to three annuli into body. Stylet almost $21 \mu \mathrm{~m}$ long, with well-developed, anteriorly directed concave to straight knobs. Spermatheca not seen. Tail elongate, subcylindrical, 3.1 times anal body width long, with 25 annuli, terminus broadly rounded without annuli. Phasmid prominent in anterior part of tail.

The morphology and morphometrics of this Florida population are coincident with the original species de-
scription of Ty. agri by Ferris (1963). This species was first described from a corn field cropped continuously for 85 years at the University of Illinois, Urbana, Illinois, USA, and later reported from several places in the USA including Iowa, Michigan, and Tennessee (Ferris, 1963; Bernard, 1980; Knobloch \& Bird, 1981; Norton et al., 1984; Anderson \& Potter, 1991).

In this work we considered the Ty. annulatus (EF030983) identified by Chen et al. (2006) as Ty. agri based on its similarity in morphology, morphometrics, and ITS rRNA gene sequences.

Tylenchorhynchus annulatus (Cassidy, 1930) Golden, 1971 (Fig. S13, Table S1)
The US populations of Ty. annulatus from Florida found on Ficus sp. and from California found on grasses were characterized by having a rounded to truncate lip region about $7.0-8.5 \mu \mathrm{~m}$ wide, continuous or slightly offset from the body with three to four annuli, stylet $16.0-$ $21.0 \mu \mathrm{~m}$ long with distinct basal knobs and also flat to convex and posteriorly directed knobs. Phasmids prominent, located in the anterior half of tail. Tail elongate, subcylindrical, 2.7-3.5 times anal body width long, with 18-26 annuli and a broadly rounded terminus. Occasionally a clavate smooth tail terminus was noted in the Napa County, California, population and some specimens were parasitized by Pasteuria sp. spores (Fig. S13).

The morphology and morphometrics of these populations are coincident with previous species descriptions of Ty. annulatus (Cassidy, 1930; Hollis, 1962; Timm, 1963; Golden, 1971; Siddiqi, 1971, 1976). This species was described from Hawaii, USA, and reported from subtropical and tropical areas in all continents all over the world except for Europe and has been extensively reported in North America (Anderson \& Potter, 1991).

Tylenchorhynchus clarus Allen, 1955 (Figs S14, S15; Tables S3, S4)

The Spanish and US populations of Ty. clarus collected from several hosts (alfalfa, cork oak, fig tree, grapevine, sunflower, tamarisk, and wheat) and localities (Chucena, Jerez de la Frontera, Niebla, Sanlúcar de Barrameda, and Merced and Calusa Counties, California) were similar to each other and characterized by having a straight, cylindrical body with a high, truncate lip region that is continuous with the body and has four to five lip annuli. In en face view (SEM) labial disc is flattened laterally, dorsally, and ventrally, resulting in a squarish pattern with slight indentations on the dorsal and ventral sides (Fig. S15B); margins of labial disc interrupted laterally by amphidial openings (Fig. S15A, B). Posterior to labial disc, a continuous lip annulus, broader on lateral sides. Oral aperture slit-like, orientated dorsoventrally, with three papillae on each side parallel to long axis. Stylet
$15-17.5 \mu \mathrm{~m}$ long with anterior margins of knobs directed forward. Tail conoid-obtuse with smooth terminus; ten to 16 annuli on tail. Lateral fields with four incisures, outer ones crenate. Males present, morphologically similar to females except for sexual characters, and body in posterior region usually more curved than in females. Spicules and gubernaculum well developed, $16-20$ and $9-11 \mu \mathrm{~m}$ long, respectively. Tail terminus pointed.

The morphology and morphometrics of the Spanish and US populations are coincident with previous species descriptions by Allen (1955) and Castillo et al. (1991). According to Geraert (2011), this species has been described from California, USA. It has also been reported from six other states of the USA (Norton et al., 1984), the Netherlands (Loof, 1959; Dao, 1970), Egypt (Elmiligy, 1969), Mexico, (Knobloch, 1975), Greece (Koliopanos \& Vovlas, 1977), India (Ray \& Das, 1983), Jordan (Hashim, 1983), South Africa (Kleynhans \& Heyns, 1984), Canada and Morocco (Anderson \& Potter, 1991), Spain (Castillo et al., 1991), and Poland (Brzeski, 1998).

Tylenchorhynchus claytoni Steiner, 1937

(Fig. S16; Table S5)
The US population of Ty. claytoni has a rounded or button-shaped lip region, offset by a slight constriction; the tail tapered regularly to a rounded, smooth to bluntly rounded terminus, sometimes with annuli extending further back on the terminus, almost being an annulated terminus; tail with 17-20 annuli; phasmids located either in the centre or mostly offcentre of the lateral field.

The morphology and morphometrics of this US population are coincident with the original description from soil around the roots of tobacco in South Carolina by Steiner (1937) and other descriptions of this species provided by Golden, Maqbool \& Handoo (1987) and Zeng et al. (2012).

Tylenchorhynchus leviterminalis Siddiqi, Mukherjee

 \& Dasgupta, 1982 (Fig. S17, Table S5)The US population from Wilton, Connecticut, on avocado was characterized by a ventrally arcuate to C-shaped body with a hemispherical to rounded smooth, continuous lip region. Stylet $19-20 \mu \mathrm{~m}$ long with posteriorly directed, rounded knobs. Tail subcylindrical to clavate, about 3.1 times anal body diameter long with a smooth, hyaline tail terminus. Phasmid located in anterior half of tail. Male morphologically similar to female except for sexual characters, and body in posterior region usually more curved than in female, bursa encircling the entire tail. Spicules and gubernaculum well developed, measuring 20 and $12 \mu \mathrm{~m}$ in length, respectively. Tail terminus pointed.

The morphology and morphometrics of the Wilton, Connecticut population are coincident with previous
species descriptions (Siddiqi et al., 1982; Mizukubo, Toida \& Keereewan, 1993; Talavera, Watanabe \& Mizukubo, 2002; Chen et al., 2006). This species has been reported from West Bengal, India (Siddiqi et al., 1982), China (Vovlas \& Cheng, 1988), Thailand (Mizukubo et al., 1993), Japan (Talavera et al., 2002), Assam, India (= Tylenchorhynchus paranudus) (Phukan \& Sanwal, 1982; Pathak \& Siddiqui, 1997), Papua New Guinea (Bridge \& Page, 1984; Troccoli \& Geraert, 1995), Vietnam (Nguyen et al., 1997), and Taiwan (Chen et al., 2006).

Our molecular study suggests that Ty. leviterminalis may represent a complex of sibling species.

Tylenchorhynchus thermophilus Golden, Baldwin \&

 Mundo-Ocampo, 1995 (Fig. S18, Table S8)The Indiana population of Ty, thermophilus from an unknown host in Indiana, USA, was characterized by having a cylindrical body with a coarsely striated cuticle. Lip region continuous with body contour, bearing four annuli. Labial framework moderately sclerotized. Stylet $22 \mu \mathrm{~m}$ long with well-developed, anteriorly directed concave knobs. Lateral fields with four incisures. Postanal intestinal sac absent. Tail tapering, conoid, bearing 28 annuli without striations. Phasmids slightly offcentre, on anterior part of tail. Male similar to female. Spicules arcuate, about $24.5 \mu \mathrm{~m}$ long. Gubernaculum $12.5 \mu \mathrm{~m}$ long with proximal end slightly curved and bursa encircling entire tail.

The morphology and morphometrics of the Indiana population are coincident with the original species description of Ty. thermophilus (Golden et al., 1995), except for the slightly longer stylet of about 22 vs. 19$20.2 \mu \mathrm{~m}$ and higher V ratio [(distance from anterior end to vulva/body length)/100; 59 vs. $53-56 \%$]. This species was originally described from soil around the roots of saltgrass [Distichlis spicata (L.) Green] in Death Valley National Monument, California, USA, and this finding represents a new record of this species for Indiana.

Tylenchorhynchus zeae Sethi \& Swarup, 1968

(Fig. S19, Table S7)
The Spanish populations of Ty. zeae from Manzanilla, Huelva, and Montilla, Córdoba, and from Santaella, also in Córdoba, on the rhizospheres of grapevine and olive, respectively, were characterized by having a cylindrical, slightly arcuate body with a continuous to slightly offset lip region with four to five annuli. In en face view (SEM) a depressed labial disc fused with labial sectors is seen, resulting in a squarish pattern with slight indentations on the dorsal and ventral sides, margins of labial disc interrupted laterally by amphidial openings (Fig. S19E, F). Oral aperture slit-like, orientated dorsoventrally, surrounded by four rounded, almost identical confluent lips/papillae. Stylet with anteriorly flattened knobs measuring $16.0-17.5 \mu \mathrm{~m}$, with
anteriorly to laterally directed flattened knobs. Phasmids located in anterior half of tail. Tail conoid to subhemispherical, about 2.1-2.5 times anal body diameter in length, with obtuse smooth terminus bearing 13-20 annuli. Males common, bursa encircling entire tail, spicules $17.0-21.0 \mu \mathrm{~m}$ long; gubernaculum simple, rod-shaped, $10.0-11.0 \mu \mathrm{~m}$ long.

The morphology and morphometrics of these Spanish populations are coincident with the previous species descriptions of Ty. zeae (Sethi \& Swarup, 1968; Chen, Ni \& Tsay, 2007). This species was described from Punjab, India, and reported from Taiwan (Chen et al., 2007) and northern Spain (Arias \& Romero, 1979).

Telotylenchus sp. (Table S8)

The Californian population of Telotylenchus sp. collected from June Lake from the rhizosphere of a grass species was characterized by having a straight body with a conoid, continuous lip region bearing four annuli. Stylet $24 \mu \mathrm{~m}$ long with posteriorly directed knobs. Lateral fields with four incisures, areolated throughout body. Tail subcylindrical to clavate, about 3.6 times anal body diameter long with a rounded, smooth, hyaline tail terminus. Phasmid located in anterior half of tail, about $22.5 \mu \mathrm{~m}$ from anus.

Telotylenchus sp. is close to Telotylenchus verutus Kleynhans, 1975, but differs from it in having a conoid lip region with four annuli vs. offset lip region with seven to eight annuli, clavate vs. conoid tail, and shape of stylet knobs. It is also close to Telotylenchus laevis Ivanova \& Shagalina, 1988, but differs from it in having a shorter body length, in shape of tail and number of tail annuli, and in the absence of males; body length 0.79 vs. $1.03-1.4 \mathrm{~mm}$, tail clavate vs. subcylindrical and number of tail annuli 39 vs. 17-32 in T. laevis. This Telotylenchus sp. population possibly represents a new species. However, further evaluation of this species is needed after the recovery of more specimens.

Molecular characterization of Bitylenchus hispaniensis sp. Nov., Tylenchorhynchus mediterraneus sp. NOV., AND OTHER

 KNOWN SPECIES STUDIEDOur newly obtained sequences of D2-D3 of the $28 S r R N A, I T S$, and partial $18 S r R N A$ genes of B. hispaniensis sp. nov., Ty. mediterraneus sp. nov., and other studied species matched well with a few Tylenchorhynchus sequences deposited in GenBank in a Blast search (Table 7). These sequences were related to B. dubius, B. maximus, Ty. annulatus, Ty. claytoni, Ty. leviterminalis, Ty. zeae, and Telotylenchus ventralis (Table 7). The intraspecific variation detected amongst the D2-D3 of the $28 S r R N A$ gene sequences for the seven studied populations of B. hispaniensis sp. nov.
(five from olive, one from wild olive, and one from grapevine) ranged from one to two nucleotides (1%) and no indels. The intraspecific variation detected amongst the D2-D3 of the $28 S r R N A$ gene sequences for the ten studied populations of Ty. mediterraneus sp. nov. (four from olive, three from grapevine, one from stone pine, one from grapefruit, and one from sunflower) ranged from two to four nucleotides (1%) and no indels. No intraspecific variability in ITS sequences for Ty. zeae and B. hispaniensis sp. nov. was detected amongst individuals from the studied populations. Intraspecific sequence diversity for Ty. mediterraneus sp . nov. and Ty. agri varied from 0 to 1.6% ($0-11$ nucleotides) and from 0 to 1.3% ($0-10$ nucleotides), respectively. The sequence difference between type A and type B of Ty. leviterminalis was 12.3% (99 nucleotides). Similarly, the intraspecific variation detected amongst the partial $18 S r R N A$ of the studied populations of B. hispaniensis sp . nov. was only one nucleotide (1%) and one indel, whereas for Ty. mediterraneus sp . nov. it ranged from two to three nucleotides (1%) and one indel. The partial $18 S r R N A$ gene sequences of the other Tylenchorhynchus samples studied also matched well with the small number of Tylenchorhynchus spp. deposited in GenBank. Our Spanish population of B. maximus (KJ461611-KJ461612) from olive was 99% similar to a Belgian B. maximus population (AY993979), differing by just three nucleotides and no indels.

The D2-D3 of the $28 S r R N A$ gene sequences of the other Tylenchorhynchus samples studied also matched well with the small number of Tylenchorhynchus spp. deposited in GenBank. Particularly, the sequence of the Ty. claytoni population from Mississippi, USA, was 99% similar to that of Ty. claytoni (EU368589) from South Carolina, USA. The sequence of the Ty. leviterminalis population from Wilton, Connecticut, USA, was 98% similar to that of Ty. leviterminalis (EU368591) from Vietnam. The sequence of Dolichodorus mediterraneus from Tarifa, Cádiz, Spain, was 98\% similar to that of the type population of this species (DQ838803). The sequence of Trophurus imperialis from Lebrija, Sevilla, Spain was 86% similar to that of Trophurus sculptus (DQ328709), the only species of this genus deposited in GenBank so far.

Phylogenetic relationships within Telotylenchinae

The phylogenetic relationships amongst subfamily Telotylenchinae species inferred from the analyses of D2-D3 expansion segments of $28 S$, ITS, and the partial $18 S r R N A$ gene sequences using BI and ML are given in Figures 7, 8, and 9, respectively. No significant differences in topology were obtained between the BI and ML approaches although there were several exceptions in the positions of clades with low statistical
Table 7. Similarity values (\%) of rRNA sequences amongst Bitylenchus (B.) and Tylenchorhynchus (Ty.) species. Above diagonal ITS region and below diagonal D2-D3 expansion segments of $28 S r R N A$, based on multiple sequence alignment of 620 and 648 bp in length, respectively*

	Ty. dubius	Ty. aduncus	Ty. annulatus (KJ461571KJ461572)	B. brevilineatus	Ty. clarus (KJ461573KJ461575)	Ty. claytoni	B. hispaniensis sp. nov. (KJ461576- KJ461578)	B. iphilus (KJ461579)	Ty. leviterminalis (EF030983)	B. maximus (KJ461581KJ461583)	Ty. mediterraneus sp. .nov. (KC567163)	Ty. agri (KJ461591KJ461593)	Ty. thermophilus (KJ461594- KJ461595)	B. ventrosignatus (KJ461596)	Ty. zeae (KJ461597KJ461600)
Ty. dubius (DQ328707)			-	-	-	-	-	-	-	-	-	-	-	-	-
Ty. aduncus (KJ461531)	77		80	-	84	-	64	69	83	70	74	80	83	75	85
Ty. annulatus (EF030983)	78	92		-	82	-	65	68	85	68	70	84	90	71	81
B. brevilineatus (KJ461533)	82	87	88		-	-	-	-	-	-	-	-	-	-	-
Ty. clarus (KJ461534-KJ461534)	76	88	88	85		-	65	69	82	68	71	79	84	73	84
Ty. claytoni (KJ461542-KJ461543)	77	91	95	87			-	-	-	-	-	-	-	-	-
B. hispaniensis sp. nov. (KJ461544-KJ461548)	90	85	86	89	83			65	63	65	65	64	63	65	66
B. iphilus (KJ461549)	79	87	88	91	85	87	87		65	85	66	66	66	74	67
Ty. leviterminalis (EU368591)	79	92	95	87	89	93	85	87		67	70	88	88	72	83
B. maximus (KJ461551-KJ461552)	81	87	88	94	86	87	88	92	88		68	68	68	72	68
Ty. mediterraneus sp. nov. (KJ461553KJ461558)	79	89	88	89	86	88	86	88	87			70	70	71	72
Ty. agri (KJ461549, KJ461559-KJ461560)	77	91	94	87	89	93	84	87	96	87	87		85	73	80
Ty. thermophilus (KJ461561-KJ461562)	78	91	95	88	89	97	84	88	95	88	89	94		71	83
B. ventrosignatus (KJ461567)	77	84	83	85	82	81	84	83	83	84	85	83	82		72
Ty. zeae (KJ461563-KJ461566)	78	92	93	88	91	92	85	89	93	89	89	93	92		

[^6]

Figure 7. The 50% majority rule consensus trees from Bayesian analysis generated from the D2-D3 of $28 S$ rRNA gene data set with a general time reversible of invariable sites and a gamma-shaped distribution model. Posterior probabilities more than 65% are given for appropriate clades; bootstrap values greater than 50% are given on appropriate clades in the maximum likelihood analysis. Newly obtained sequences are in bold letters.
support. Clade numbering was assigned based on common species groupings observed in all studied trees.
The D2-D3 of the $28 S r R N A$ gene sequence alignment contained 59 sequences, five of which were outgroups. The alignment was 705 bp in length. The 50% majority rule consensus BI and ML trees showed five major highly or moderately supported clades (Fig. 7). Clade I (PP and BS $=100 \%$) comprised eight Tylenchorhynchus species (Ty. aduncus, Ty. annulatus, Ty. clarus, Ty. claytoni, Ty. leviterminalis, Ty. zeae, Ty. agri, Ty. thermophilus) and one Telotylenchus species. Clade II ($\mathrm{PP}=100 ; \mathrm{BS}=98$) included Ty. mediterraneus sp. nov. only. Clade III ($\mathrm{PP}=99 ; \mathrm{BS}=100$) contained five Bitylenchus species (B. hispaniensis sp. nov., B. brevilineatus, B. dubius, B. iphilus, B. maximus), and three species of Paratrophurus (P. bhutanensis, P. loofi, and P. striatus). Clade IV ($\mathrm{PP}=100 ; \mathrm{BS}=98$) contained two species of Trophurus (Tr. imperialis and Tr. sculptus). Clade V included only B. ventrosignatus,
which occupied a basal position in the tree and was clearly separated from all other Bitylenchus spp.
The ITS rRNA gene sequence alignment consisted of 37 ITS sequences and was 804 bp in length. The 50% majority rule consensus BI and ML trees resolved four highly supported major clades (Fig. 8). Clade I ($\mathrm{PP}=100 ; \mathrm{BS}=90$) comprised seven Tylenchorhynchus species [Ty. aduncus, Ty. annulatus, Ty. clarus, Ty. leviterminalis (type A and type B), Ty. zeae, Ty. agri, and Ty. thermophilus]. Clade II (PP and $\mathrm{BS}=100$) comprised seven sequences of Ty. mediterraneus sp. nov. Clade III ($\mathrm{PP}=100 ; \mathrm{BS}=88$) contained three Bitylenchus species (B. hispaniensis sp. nov., B. iphilus, and B. maximus) and Paratrophurus bhutanensis. The basal fourth clade named here as Clade IV included a single species, B. ventrosignatus.
The partial $18 S r R N A$ gene sequence included 25 sequences and was 862 bp in length. The 50% majority rule consensus BI and ML trees resolved six highly

Figure 8. The 50% majority rule consensus trees from Bayesian analysis generated from the ITS rRNA gene data set with a transversional model of invariable sites and a gamma-shaped distribution model. Posterior probabilities more than 65% are given for appropriate clades; bootstrap values greater than 50% are given on appropriate clades in the maximum likelihood analysis. Newly obtained sequences are in bold letters.
supported major clades (Fig. 9). Clade I ($\mathrm{PP}=100$; BS =97) comprised a group of four Tylenchorhynchus species; Ty. aduncus, Ty. clarus, Ty. leviterminalis, and Ty. zeae. Clade II ($\mathrm{PP}=100$; BS $=77$) contained sequences of Ty. mediterraneus sp. nov. populations and Telotylenchus ventralis. The third clade, named here as IIIa (PP and BS $=100$), consisted of two Bitylenchus species: B. hispaniensis sp. nov. and B. dubius. Clade IV included only Trophurus imperialis. Clade V was in a basal position and contained a single species B. ventrosignatus. The sixth clade, named IIIb ($\mathrm{PP}=96$; $\mathrm{BS}=98$), consisted of Bitylenchus brevilineatus, B. iphilus, B. maximus, and Paratrophurus bhutanensis.

The results of the SH tests for alternative topologies using the three $r R N A$ gene fragment alignments with a reduced number of taxa are shown in Table 8. Analyses of all data sets accepted the hypothesis of monophyly for the genus Tylenchorhynchus sensu Siddiqi (2000) when all studied Tylenchorhynchus sequences were constrained into one group. The SH test for the D2-D3 of $28 S r R N A$ data set also accepted the hypothesis of monophyly for the genus Paratrophurus. The hypothesis of monophyly for the genus Bitylenchus sensu Gómez Barcina et al. (1992) and Siddiqi (2000) was accepted for all three data sets only after the exclusion of
B. ventrosignatus from this genus. Monophyly of the genus Tylenchorhynchus sensu Fortuner \& Luc (1987) was rejected for the D2-D3 of $28 S r R N A$ data set.

MORPHOLOGICAL MATRIX AND MAPPING OF MORPHOLOGICAL CHARACTERS

Several characters used in the species identification key were used to reconstruct the ancestrality of some characters by parsimony (Figs S20, S21). Shapes of tail, tail terminus, and lip region showed mosaic evolution patterns. Shape of tail ranged from cylindrical, subcylindrical, and conoid for Tylenchorhynchus, whereas tails for the other genera were more variable. Annulated tail tip terminus is likely to be the ancestral character state for Telotylenchidae, which then evolved independently to a smooth state three times. Posterior stylet knob inclination seems to be the ancestral character state that then changed to lateral or anterior in several groups during nematode evolution.

DISCUSSION

The present morphological and morphometrics studies confirmed that diagnosis and identification of Bitylenchus

Figure 9. The 50% majority rule consensus trees from Bayesian analysis generated from the $18 S r R N A$ gene data set with a transitional model of invariable sites and a gamma-shaped distribution model. Posterior probabilities more than 65% are given for appropriate clades; bootstrap values greater than 50% are given on appropriate clades in the maximum likelihood analysis. Newly obtained sequences are in bold letters.
and Tylenchorhynchus species based solely on morphometric features are quite problematic because there is an almost continuous range of these within populations of the same species as well as amongst species (Tables 2-6, S1-S7).

MORPHOLOGICAL COMPARISON OF BITYLENCHUS hispaniensis sp. nov. and Tylenchorhynchus MEDITERRANEUS SP. NOV. WITH RELATED TAXA

Bitylenchus hispaniensis sp. nov. from the type and other localities were identical morphologically, but some minor morphometric differences amongst them were detected and considered as geographical intraspecific variability (Tables 2, 3). Bitylenchus hispaniensis sp. nov. is very close to Bitylenchus iphilus Minagawa, 1995, Bitylenchus teeni Hashim, 1983, and Bitylenchus parvus Allen, 1955. It differs from B. iphilus in having on average a shorter stylet ($15.5-18.5$ vs. $17-20 \mu \mathrm{~m}$); a truncate, continuous lip region vs. hemispherical, offset
lip region; non-areolated lateral fields vs. areolated throughout; the shape of female tail being bluntly rounded with a hemispherical to clavate terminus bearing 52 (40-66) annuli vs. straight to curved, narrowly clavate tail with 31 (24-41) annuli; absence of postrectal intestinal sac vs. present, $8.1-32.3 \mu \mathrm{~m}$ long; and spicules being longer $25.3(23-30) \mu \mathrm{m}$, with a smooth terminus vs. shorter $23.8(20-25.7) \mu \mathrm{m}$ with a minutely bifurcate terminus. From B. teeni it differs by the shape of female tail being bluntly rounded with a hemispherical to clavate terminus bearing 52 (4066) annuli vs. cylindrical tail with a hemispherical to subhemispherical terminus bearing 44-57 annuli; absence of postanal intestinal sac vs. postanal intestinal sac present and occupying the entire tail cavity; and vulval flap and epiptygma absent vs. present in the form of a double epiptygma. From B. parvus it differs in the shape of female tail being bluntly rounded with a hemispherical to clavate terminus bearing 40-66 annuli vs. cylindrical tail with hemispherical
Table 8. Results of the Shimodaira-Hasegawa tests for alternative hypotheses using maximum likelihood (ML) trees reconstructed from $r R N A$ gene sequence
alignments

Hypothesis	D2-D3 of 28S rRNA			ITS rRNA			$18 S \mathrm{R} N \mathrm{NA}$		
	$-L n L$	Difference in $-L n \mathrm{~L}$	P	-LnL	Difference in $-L n \mathrm{~L}$	P	$-L n \mathrm{~L}$	Difference in $-L n \mathrm{~L}$	P
ML tree	5927.76651	Best	-	7418.7943	Best	-	2919.55647	Best	-
Species of Tylenchorhynchus sensu Siddiqi (2000) constrained into a monophyletic group	5954.44202	26.67550	0.107	7430.8519	12.05754	0.269	2931.61844	12.06196	0.193
Species of Bitylenchus sensu Siddiqi (2000) constrained into a monophyletic group	5975.07088	47.30437	0.008*	7474.81084	56.01649	0.000*	2939.07295	19.51647	0.044*
Species of Bitylenchus sensu Siddiqi (2000) \dagger constrained into a monophyletic group without B. ventrosignatus	5939.14684	11.38032	0.475	7430.69237	11.89802	0.270	2925.21759	5.66112	0.498
Species of Paratrophurus sensu Siddiqi (2000) constrained into a monophyletic group	5952.30564	24.53913	0.106	-	-	-	-	-	-
Species of Bitylenchus sensu Gómez Barcina et al. (1992) \ddagger constrained into a monophyletic group without B. ventrosignatus	5939.95422	12.18771	0.442	7418.7943	Best	-	2919.84967	0.29319	0.902
Species of Tylenchorhynchus sensu Fortuner \& Luc (1987)§ constrained into a monophyletic group	5975.08754	47.32102	0.011*	7430.49454	11.70019	0.268	2935.36198	15.80551	0.09

[^7]terminus bearing 35-43 annuli; and in the absence of postanal intestinal sac vs. postanal intestinal sac present.

Tylenchorhynchus mediterraneus sp. nov. from the type and other localities were identical morphologically, but some minor morphometric differences amongst them were detected and considered as geographical intraspecific variability (Tables 4-6). Tylenchorhynchus mediterraneus sp. nov. is very close to Tylenchorhynchus dewaelei Kleynhans, 1992, that was originally described from Namibia. However, it differs from Ty. dewaelei in having a shorter tail [55.0 (42. 5-70.0) vs. $84(71-92) \mu \mathrm{m}$]; slightly longer stylet [20.4 (18$23)$ vs. 19.4 (17-21.3) $\mu \mathrm{m}$]; vulva without recessed, double epiptygma vs. epiptygma present; higher number of tail annuli [57 (42-81) vs. (41-65)], shorter anal body width [17.1 (12-25) vs. 27.6 (23.4-32.5) $\mu \mathrm{m}$]; large phasmids vs. inconspicuous; and slightly shorter spicule length [25.5 (20.0-28.5) vs. $32(28.8-35) \mu \mathrm{m}]$. It is also similar to Tylenchorhynchus canalis and other species described from Spain such as Tylenchorhynchus serranus and Tylenchorhynchus pratensis, but these all differ from Ty. mediterraneus sp. nov. in one or more other characters. For example, from Ty. canalis it differs in the shape of lip region, stylet knobs, tail terminus, and number of tail annuli [high, rounded to hemispherical offset lip region vs. truncate, flattened lip region; posteriorly directed knobs vs. strong anteriorly directed knobs; rounded, smooth terminus vs. annulated tail terminus; and higher number of tail annuli (4281 vs. 66)].

Some specimens of this species have pharyngeal glands overlapping the intestine. Seinhorst (1971) and Fortuner \& Luc (1987) discussed the taxonomic importance of this character and noted that intermediate forms existed between two morphologies described as typical for Tylenchorhynchus and Telotylenchus. Tylenchorhynchus brassicae, Ty. clarus, Ty. indicus, and Tylenchorhynchus mashhoodi have the pharyngeal glands slightly overlapping, and the dorsal gland nucleus in the posterior half of the gland. We also noticed a few specimens with these features in Ty. dewaelei.

Phylogeny of the subfamily Telotylenchinae

The genus Bitylenchus was not recognized by Fortuner \& Luc (1987) and Geraert (2011), but it was accepted in Siddiqi's (2000) classification. In this study we distinguished ten Tylenchorhynchus species and five Bitylenchus species. The species of these genera clustered separately in most trees. Although in the D2D3 of the $28 S$ and $18 S$ trees representatives of the genera Telotylenchus and Paratrophurus were nested within Tylenchorhynchus and Bitylenchus, respectively, and made these two genera paraphyletic, the ML tests accepted all hypotheses with monophyly
of Tylenchorhynchus and Bitylenchus without B. ventrosignatus. Fortuner \& Luc (1987) noted that B. ventrosignatus lacks a postanal intestinal sac, which is a generic character. In all trees this species occupied a basal position within Telotylenchinae, suggesting that it might be considered under a separate genus. Analyses of all data sets accepted the hypothesis of monophyly for the genus Tylenchorhynchus sensu Siddiqi (2000) and rejected the 'large-genus idea' advocated by Fortuner \& Luc (1987).

The genus Sauertylenchus was established by Sher (1974) with a single species Sauertylenchus labiodiscus, which was only distinguished from other related genera by a conspicuous labial disc and stylet over $30 \mu \mathrm{~m}$ long. Gómez Barcina et al. (1992) synonymized Sauertylenchus with Bitylenchus based on the results of SEM analysis of lip regions, which showed structural similarity for both taxa. However, Geraert (2011) and Siddiqi (2000) did not accept this synonymization. Siddiqi (2000) included five valid species in the genus Sauertylenchus, amongst them Sauertylenchus maximus, whereas Geraert (2011) considered Sauertylenchus as a monospecific genus. The present study revealed that B. maximus (= S. maximus) clustered within Bitylenchus species (i.e. B. brevilineatus, B. hispaniensis sp. nov., and B. iphilus), thus supporting the view of Gómez Barcina et al. (1992) on the relationships between Sauertylenchus and Bitylenchus. However, the position of the type species S. labiodiscus within Telotylenchidae still needs to be analysed in order to make a final conclusion with regard to maintaining the genus Sauertylenchus.

The close relationship of Telotylenchus with Tylenchorhynchus was pointed out by Siddiqi (1960). Telotylenchus shares most morphological characters with Tylenchorhynchus and differs from this genus only in having the dorsal pharyngeal gland extending over the intestine and in having a different en face view and structure of the gubernaculum (Siddiqi, 2000). In our study the genus Telotylenchus was always nested within Tylenchorhynchus species in the phylogenetic trees. However, constrained trees, in which representatives of Telotylenchus were outside Tylenchorhynchus, were not significantly worse than the best tree, and thus do not give a sufficient reason for synonymization of it with Tylenchorhynchus. Other genera (Histotylenchus, Telotylenchoides, and Trichotylenchus) that have pharyngeal glands extending over the intestine should be included in future phylogenetic analyses in order to better understand the evolution of this character within nematodes.

The genus Paratrophurus is morphologically similar to Tylenchorhynchus, from which it differs only in the abnormally thickened terminal cuticle of the tail (Castillo et al., 1989; Siddiqi, 2000). Castillo et al. (1989) noted that both genera have similar SEM en face views with
labial disc and labial sectors fused into a quadrangular structure, which provides strong evidence for the close relationship between these genera. Our current analysis confirmed close relationships of Paratrophurus with Bitylenchus. In the phylogenetic trees, Paratrophurus species clustered with Bitylenchus and the SH test did not reject the constrained tree when Paratrophurus formed a monophyletic group.
Trophurus has a similar lip region, pharynx, and tail to those of Paratrophurus, this genus is characterized by a posterior genital branch reduced to a uterine sac. Bert et al. (2008) noticed that there were relatively few switches in the number of gonad arms in the order Tylenchinda, possibly indicating that the monodelphic vs. didelphic state has relatively stronger historical and genetic determinants than suggested from traditional classifications. Analysis by Bert et al. (2008) also indicated that monodelphy is ancestral for tylenchid nematodes. In our D2-D3 tree, Trophurus species clustered in the basal position of Telotylenchinae, thus suggesting that the monodelphic genital branch is the ancestral morphological character for this subfamily. However, further testing and more detailed phylogenies need to be used in order to completely assess this hypothesis.

Some characters used in the species identification key (Handoo, 2000) were selected here to reconstruct the ancestrality of some characters by parsimony. The shapes of the tail, terminus and lip region did not show a clear evolution pattern, as has also been suggested for the shape of the tail in a broader phylogenetic analysis by Carta et al. (2010). The position of the stylet knobs appears to have evolved from a posterior position to an anterior position; however, the intermediate character is shared amongst several species lineages and anterior knobs are shared in deeper branches in our tree. Anteriorly directed stylet knobs are associated with the protractor muscles linked to the stylet and may relate to the enforcement of the perforation function (Ryss, 2002). Specifically, in our data set some branches (Ty. thermophilus clade) of the tree show the logical transition of posterior-lateral-anterior, whereas in other anterior clades the transition character species are not yet studied molecularly. Tail tip annulations look like an ancestral character that has evolved to the smooth state; however, smooth tail tip has multiple independent origins and appears in two lineages of Bitylenchus (B. ventrosignatus and B. brevilineatus).

CONCLUSIONS

The present research establishes the importance of using integrative taxonomic identification by highlighting the time-consuming aspects and difficulty of correct specieslevel identification within the genera Tylenchorhynchus and Bitylenchus. Overall, the data reported here
strengthen the idea that Tylenchorhynchus and Bitylenchus species delimitation can be refined and improved based on studies that integrate morphology, morphometry, and molecular taxonomic identification and phylogeny using the D2-D3 region, ITS of rRNA, and partial $18 S r R N A$ sequences. These molecular markers provide precise and unequivocal diagnosis of some of the stunt nematode species in cultivated and native vegetation. This point is particularly important because nematode morphology is quite similar and mixed populations of several species and genera within Telotylenchidae may occur in the same soil sample. Additionally, the discovery of several new records of species from the family Telotylenchidae present in Spain and the USA suggests that the biodiversity of these nematodes is still not fully clarified, and requires further study. Phylogenetic analyses based on the three molecular markers used here resulted in a general consensus of species groupings because lineages were maintained for the majority of species. Consequently, the genera Tylenchorhynchus and Bitylenchus can be clearly separated on the basis of integrative taxonomy that includes both morphological and molecular studies, as well as SH testing for alternative topologies obtained from the D2-D3 of $28 S, I T S$, and partial $18 S r R N A$ gene sequences.

ACKNOWLEDGEMENTS

The authors thank Joseph Mowery (USDA-ARS-NL) for excellent technical assistance including drafting of the line drawings, H. Rapoport (IAS-CSIC) for reviewing the manuscript before submission, J. Martin Barbarroja and G. León Ropero (IAS-CSIC) for exemplary technical support, and M. Montes-Borrego (IASCSIC) for his help with some of the olive sampling. The last author acknowledges support from grant KBBE 219262 ArimNET_ERANET FP7 2012-2015 Project PESTOLIVE ‘Contribution of olive history for the management of soilborne parasites in the Mediterranean basin' from Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), grant AGL2012-37521 from 'Ministerio de Economía y Competitividad' of Spain, grants P12-AGR 1486 and AGR-136 from 'Consejería de Economía, Innvovación y Ciencia' from Junta de Andalucía, grant AGL200906955 from 'Ministerio de Ciencia e Innovación' of Spain, and Union Europea, Fondo Europeo de Desarrollo regional, 'Una manera de hacer Europa'. The fifth author acknowledges the support from the Russian Foundation of Basic Research, project number 14-04-00953 A. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the United States Department of Agriculture.

REFERENCES

Abolafia J, Liebanas G, Peña-Santiago R. 2002. Nematodes of the order Rhabditida from Andalucía Oriental, Spain. The subgenus Pseudacrobeles Steiner, 1938, with description of a new species. Journal of Nematode Morphology and Systematics 4: 137-154.
Allen MW. 1955. A review of the nematode genus Tylenchorhynchus. University of California Publications in Zoology 61: 129-166.
Anderson RV, Potter JW. 1991. Stunt nematodes: Tylenchorhynchus, Merlinius, and related genera. In: Nickle WR, ed. Manual of agricultural nematology. New York, USA: Marcel Dekker, Inc, 529-586.
Andrássy I. 2007. Free-living nematodes of Hungary (Nematoda Errantia) Vol. II. Budapest, Hungary: Hungarian Natural History Museum.
Apolônio Silva De Oliveira D, Decraemer W, Holovachov O, Burr JAY, Tandingan De Ley I, De Ley P, Moens T, Derycke S. 2012. An integrative approach to characterize cryptic species in the Thoracostoma trachygaster Hope, 1967 complex (Nematoda: Leptosomatidae). Zoological Journal of the Linnean Society 164: 18-35.
Arias M. 1970. Paratrophurus loofi n. gen., n. sp. (Tylenchidae) from Spain. Nematologica 16: 47-50.
Arias M, Romero MD. 1979. Nematodos posibles fitoparásitos asociados a los cultivos de cereales en España. Anales I.N.I.A. Servicio Protección Vegetal 11: 109-130.
Barker KR. 1974. Influence of geographic area and previous crop on occurrence and densities of plant-parasitic nematodes in North Carolina. Plant Disease Reporter 58: 991995.

Bernard EC. 1980. Identification, distribution, and plant associations of plant-parasitic nematodes in Tennessee. University of Tennessee Agricultural Experiment Station Bulletin 594: 1-18.
Bert W, Leliaert F, Vierstraete A, Vanfleteren J, Borgonie G. 2008. Molecular phylogeny of the Tylenchina and evolution of the female gonoduct (Nematoda: Rhabtitida). Molecular Phylogenetics and Evolution 48: 728-744.
Bridge J, Page SLJ. 1984. Plant nematode pests of crops in Papua New Guinea. Journal of Plant Protection of Tropics 1: 99-109.
Brzeski MW. 1968. Plant parasitic nematodes associated with cabbage in Poland 1. Systematic studies. Annales Zoologici Warszawa 26: 249-279.
Brzeski MW. 1998. Nematodes of Tylenchina in Poland and temperate Europe. Warszawa, Poland: Muzeum I Instytum Zoologii Polska Akademia Nauk.
Brzeski MW, Dolinski CM. 1998. Compendium of the genus Tylenchorhynchus Cobb, 1913 sensu lato (Nematoda: Belonolaimidae). Russian Journal of Nematology 6: 189199.

Buckley TR, Simon C, Shimodaira H, Chambers GK. 2001. Evaluating hypotheses on the origin and evolution of the New Zealand alpine cicadas (Maoricicada) using multiplecomparison tests of tree topology. Molecular Biology and Evolution 18: 223-234.

Carta LK, Skantar AM, Handoo ZA. 2010. Molecular rDNA phylogeny of Telotylenchidae Siddiqi, 1960 and evaluation of tail termini. Journal of Nematology 42: 359-369.
Cassidy GH. 1930. Nematodes associated with sugarcane in Hawaii. Hawaiian Planters Record 34: 379-387.
Castillo P, Gómez-Barcina A, Vovlas N, Navas A. 1991. Some plant-parasitic nematodes associated with cotton and chickpea in southern Spain with description of Amplimerlinius magnistylus sp. n. Afro-Asian Journal of Nematology 1: 195203.

Castillo P, Siddiqi MR, Gómez-Barcina A. 1989. Studies on the genus Paratrophurus Arias (Nematoda: Tylenchina) with descriptions of two new species. Nematologia Mediterranea 17: 83-95.
Castillo P, Vovlas N, Subbotin SA, Troccoli A. 2003. A new root-knot nematode, Meloidogyne baetica sp. n. (Nematoda: Heteroderidae), parasitizing wild olive in Southern Spain. Phytopathology 93: 1093-1102.
Chen DY, Ni HF, Tsay TT. 2007. Identification of a new recorded stunt nematode Tylenchorhynchus zeae (Nematoda: Belonolaimidae) in Taiwan. Plant Pathology Bulletin 16: 7986.

Chen DY, Ni HF, Yen JH, Tsay TT. 2006. Identification of stunt nematode Tylenchorhynchus annulatus and a new recorded Tylenchorhynchus leviterminalis (Nematoda: Belonolaimidae) in Taiwan. Plant Pathology Bulletin 15: 251262.

Chizhov VN, Chumakova OA, Subbotin SA, Baldwin JG. 2006. Morphological and molecular characterization of foliar nematodes of the genus Aphelenchoides: A. fragariae and A. ritzemabosi (Nematoda: Aphelenchoididae) from the Main Botanical Garden of the Russian Academy of Sciences, Moscow. Russian Journal of Nematology 14: 179-184.
Coolen WA. 1979. Methods for extraction of Meloidogyne spp. and other nematodes from roots and soil. In: Lamberti F, Taylor CE, eds. Root-knot nematodes (Meloidogyne species). Systematics, biology, and control. London, UK: Academic Press, 317-329.
Dao DF. 1970. Climatic influence on the distribution of Trichotylenchus falciformis Whitehead, 1959. Mededelingen Landbouwhogescool Wageningen 70: 1-181.
Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature methods 9: 772.
Dayrat B. 2005. Towards integrative taxonomy. Biological Journal of the Linnean Society 85: 407-415.
Elmiligy IA. 1969. Redescription of Tylenchorhynchus clarus Allen, 1955. Nematologica 15: 288-290.
Ferris VR. 1963. Tylenchorhynchus silvaticus n. sp. and Tylenchorhynchus agri n. sp. (Nematoda: Tylenchida). Proceedings of the Helminthological Society of Washington 30: 165-168.
Filipjev IN. 1934. The classification of the free-living nematodes and their relation to the parasitic nematodes. Smithsonian Miscellaneous Collections 89: 1-63.
Filipjev IN. 1936. On the classification of the Tylenchinae. Proceedings of the Helminthological Society of Washington 3: 80-82.

Fortuner R, Luc M. 1987. A reappraisal of Tylenchina (Nemata). 6. The family Belonolaimidae Whitehead, 1960. Revue de Nématologie 10: 183-202.
Ganguly S, Lal M, Procter DLC. 2004. Telotylenchoides bhutanensis sp. n. (Nematoda :Tylenchida) from Bhutan, along with key to the genera of Telotylenchinae. Indian Journal of Nematology 34: 196-199.
Ganguly S, Lal M, Rathour KS. 2013. A check-list of globally known species of Tylenchorhynchus Cobb, 1913 along with compendium of the Indian species. Indian Journal of Nematology 43: 47-60.
Geraert E. 2011. The Dolichodoridae of the world. Identification of the family Dolichodoridae (Nematoda). Gent, Belgium: Academia Press.
Geraert E, Zepp A, Borazanci N. 1975. Some plant nematodes from Turkey. Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversteit Gent 40: 511-515.
Golden AM. 1971. Classification of the genera and higher categories of the order Tylenchida (Nematoda). In: Zuckerman BM, Mai WF, Rohde RA, eds. Plant parasitic nematodes. Vol. I. Morphology, anatomy, taxonomy and ecology. New York, USA: Academic Press, 191-232.
Golden AM, Baldwin JG, Mundo-Ocampo M. 1995. Description of Tylenchorhynchus thermophilus n. sp. (Nematoda:Tylenchina) from Saltgrass in Death Valley, California. Journal of Nematology 27: 312-319.
Golden AM, Maqbool MA, Handoo ZA. 1987. Description of two new species of Tylenchorhynchus Cobb, 1913 (Nematoda: Tylenchida), with details of morphology and variation of T. claytoni. Journal of Nematology 19: 58-68.

Gómez Barcina A, Siddiqi MR, Castillo P. 1992. Bitylenchus Filipjev, 1934 (Nematoda: Tylenchida) with descriptions of two new species from Spain. Journal of Helminthological Society of Washington 59: 96-100.
de Guiran G. 1967. Description de deux especes nouvelles du genre Tylenchorhynchus Cobb, 1913 (Nematoda: Tylenchinae) accompagnee d'une cle des femelles et precisions sur T. mamillatus Tobar-Jiménez, 1966. Nematologica 13: 217230.

Gupta NK, Uma. 1985. On two species of the genus Tylenchorhynchus Cobb, 1913. Research Bulletin Punjab University 36: 19-22.
Gutiérrez-Gutiérrez C, Cantalapiedra-Navarrete C, Montes Borrego M, Palomares-Rius JE, Castillo P. 2013a. Molecular phylogeny of the nematode genus Longidorus (Nematoda: Longidoridae) with description of three new species. Zoological Journal of the Linnean Society 167: 473500.

Gutiérrez-Gutiérrez C, Cantalapiedra-Navarrete C, Remesal E, Palomares-Rius JE, Navas-Cortés JA, Castillo P. 2013b. New insight into the identification and molecular phylogeny of dagger nematodes of the genus Xiphinema (Nematoda: Longidoridae) with description of two new species. Zoological Journal of the Linnean Society 169: 548-579.
Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98.

Handoo ZA. 2000. A key and diagnostic compendium to the species of the genus Tylenchorhynchus Cobb, 1913 (Nematoda: Belonolaimidae). Journal of Nematology 32: 20-34.
Hashim Z. 1983. Plant parasitic nematodes associated with olive in Jordan. Nematologia Mediterranea 11: 27-32.
Hollis JP. 1962. Nature of swarming in nematodes. Nature 193: 798-799.
Holterman M, Karssen G, van den Elsen S, van Megen H, Bakker J, Helder J. 2009. Small subunit rDNA-based phylogeny of the Tylenchida sheds light on relationships among some high-impact plant-parasitic nematodes and the evolution of plant feeding. Phytopathology 99: 227-235.
Huelsenbeck JP, Ronquist F. 2001. MrBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755.
Jairajpuri MS. 1982. Some studies on Tylenchorhynchinae: the subgenus Bitylenchus Filip'ev, 1934, with description of Tylenchorhynchus (Bitylenchus) depressus n. sp. and a key to species of Bitylenchus. Mededelingen van der Faculteit Landbouwwetenschappen Rijksuniversiteit Gent 47: 765770.

Jiménez-Guirado D, Murillo Navarro R, Liébanas G, Landa BB, Castillo P. 2007. Morphological and molecular characterisation of a new awl nematode, Dolichodorus mediterraneus sp. n. (Nematoda: Dolichodoridae), from Spain. Nematology 9: 189-199.
Katalan-Gateva SH, Tsoneva P. 1982. Contribution to the study of the plant nematode fauna in Bulgaria. Goddishnik na Sofiskiiskiya Universiteit 'Kliment Okhridski', Biologicheski Fakultet, Kniga 1, Zoologiya 71: 49-52.
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability (outlines version 7). Molecular Biology and Evolution 30: 772-780.
Kleynhans KPN. 1975. Some Tylenchoidea (Nematoda) from South Africa. Phytophylactica 7: 97-104.
Kleynhans KPN. 1992. New species of Tylenchorhynchus Cobb, 1913, Paratrophurus Arias, 1970 and Histotylenchus Siddiqi, 1971 from South Africa and Namibia (Nemata: Belonolaimidae). Phytophylactica 24: 235-251.
Kleynhans KPN, Heyns J. 1984. Nematodes of the families Dolichodoridae, Tylenchorhynchidae and Belonolaimidae in South Africa (Tylenchida: Hoplolaimoidea). Phytophylactica 16: 143-153.
Knobloch NA. 1975. Tylenchorhynchus aspericutis n. sp. (Nematoda) from Mexico with an emended description of Psilenchus hilarulus de Man, 1921 and two intersexes. Nematologica 21: 287-295.
Knobloch NA, Bird, GW. 1981. Plant-Parasitic nematodes of Michigan: with special reference to the Genera of the Tylenchorhynchinae (Nematoda). History of Michigan Phytonematology. Research Report 419. Farm Science 419: 3-5.
Koliopanos CN, Vovlas N. 1977. Records of some plant parasitic nematodes in Greece with morphometrical descriptions. Nematologia Mediterranea 5: 207-215.
Loof PAA. 1956. Trophurus a new tylenchid genus (Nematoda). Verslagen en Mededelingen, Plamenziektenkundige Dienst, Wageningen 129: 191-195.

Loof PAA. 1959. Miscellaneous notes on the genus Tylenchorhynchus (Tylenchinae: Nematoda). Nematologica 4: 294-306.
Maddison WP, Maddison DR. 2010. Mesquite: a modular system for evolutionary analysis, Version 2.73. Available at: http://mesquiteproject.org
Maqbool MA, Shahina F. 1987. Nematodes of northern areas in Pakistan. Description of Nagelus saifulmulukensis n. sp. and Merlinius montanus n. sp. (Nematoda: Merliniina) with notes on three species of Tylenchorhynchus Cobb, 1913. Revue de Nématologie 10: 289-294.
Marcussen T. 2003. Evolution, phylogeography and taxonomy within the Viola alba complex (Violaceae). Plant Systematics and Evolution 237: 51-74.
van Megen H, Van den Elsen S, Holterman M, Karssen G, Mooyman P, Bongers T, Holovachov O, Bakker J, Helder J. 2009. A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences. Nematology 11: 927-950.
Minagawa N. 1995. Bitylenchus iphilus sp. n. and Tylenchorhynchus kegasawai sp. n. (Nematoda: Tylenchida) from Japan. Afro-Asian Journal of Nematology 5: 151-160.
Mizukubo T, Toida Y, Keereewan S. 1993. A survey of the nematodes attacking crops in Thailand 11. Genus Tylenchorhynchus Cobb, 1913. Japanese Journal of Nematology 23: 19-27.
Neres PF, Da Fonseca-Genevois VG, Torres RA, Da Fonseca Cavalcanti M, De Castro FJV, Da Silva NRR, Rieger TT, Decraemer W. 2010. Morphological and molecular taxonomy of a new Daptonema (Nematoda, Xyalidae) with comments on the systematics of some related taxa. Zoological Journal of the Linnean Society 158: 1-15.
Nguyen NC, Nguyen VT, De Waele D, Geraert E. 1997. Plant-parasitic nematodes associated with banana in Vietnam. International Journal of Nematology 7: 122-126.
Noel GR, Lownsbery BF. 1978. Effects of temperature on the pathogenicity of Tylenchorhynchus clarus to alfalfa and observations on feeding. Journal of Nematology 10: 195198.

Norton DC, Donald P, Kimpinski J, Meyers RF, Noel GR, Noffsinger EM, Robbins RT, Schmitt DP, Sosa-Moss C, Vrain TC. 1984. Distribution of plant-parasitic nematode species in North America. Loretto, PA, USA: Society of Nematologists.
Ouanouki N, Mitiche F. 1991. Les nematodes de palmier et des cultures maraicheres en intercalaire dans le region de Ourgla (Sud de L'Algerie). Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversteit Gent 56: 13211325.

Page RDM. 1996. TREEVIEW: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12: 357-358.
Pathak M, Siddiqui AU. 1997. One new and five known species of Tylenchorhynchus Cobb, 1913 from ornamental crops in Udaipur region of Rajasthan. Indian Journal of Nematology 27: 99-103.
Peña-Santiago R, Castillo P, Escuer M, Guerrero P, Talavera M, Vieira P. 2003. Tylenchid species (Nematoda,

Tylenchida) recorded in the Iberian Peninsula and the Balearic Islands: a compendium. Jaén, Spain: Collection 'Monographic Papers on Nematology' n ${ }^{\circ} 2$. Servicio de Publicaciones, Universidad de Jaén, España.
Phukan PN, Sanwal KC. 1982. Tylenchorhynchus paranudus sp. n. and T. annulatus (Cassidy, 1930) Golden, 1971 from Assam, India. Indian Journal of Nematology 12: 383-385.
Rashid F, Heyns J. 1990. Tylenchorhynchus species from Namibia (Nematoda: Belonolaimidae). Phytophylactica 22: 403412.

Ray S, Das SN. 1983. Three new and five nominal species in the family Tylenchorhynchidae (Tylenchoidea: Nematoda) from Orissa, India. Indian Journal of Nematology 13: 1625.

Ryss AY. 2002. Phylogeny and evolution of the genus Pratylenchus according to morphological data (Nematoda: Tylenchida). Zoosystematica Rossica 10: 257-273.
Saltukoglu ME. 1974. The identity of Quinisulcius goodeyi (Marinari, 1962) Siddiqi, 1971. Nematologica 20: 261.
Saltukoglu ME, Geraert E, Coomans A. 1976. Some Tylenchida from the Istanbul-area (Turkey). Nematologia Mediterranea 4: 139-153.
Schlick-Steiner BC, Steiner FM, Seifert B, Stauffer C, Christian E, Crozier RH. 2010. Integrative taxonomy: a multisource approach to exploring biodiversity. Annual Review of Entomology 55: 421-438.
Seinhorst JW. 1966. Killing nematodes for taxonomic study with hot f.a. 4:1. Nematologica 12: 178.
Seinhorst JW. 1971. On the genera Trichotylenchus and Telotylenchus. Nematologica 17: 413-416.
Sethi CL, Swarup G. 1968. Plant parasitic nematodes of northwestern India. I. The genus Tylenchorhynchus. Nematologica 14: 77-88.
Sher SA. 1974. Sauertylenchus labiodiscus n. gen., n. sp. from Australia (Nematoda: Tylenchorhynchinae). Journal of Nematology 6: 37-40.
Shimodaira H, Hasegawa M. 1999. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16: 1114-1116.
Siddiqi MR. 1960. Telotylenchus, a new nematode genus from north India (Tylenchida: Telotylenchinae n. sub-fam.). Nematologica 5: 73-77.
Siddiqi MR. 1961. Studies on Tylenchorhynchus spp. (Nematoda: Tylenchida) from India. Zeitschrift für Parasitenkunde 21: 46-64.
Siddiqi MR. 1971. On the plant-parasitic nematode genera Histotylenchus gen. n. and Telotylenchoides gen. n. (Telotylenchinae), with observations on the genus Paratrophurus Arias (Trophurinae). Nematologica 17: 190-200.
Siddiqi MR. 1973. Trophurus imperialis. CI.H. Description of plant-parasitic nematodes. Set 2. No. 22.2 pp. Farnham Royal, UK: Commonwealth Agricultural Bureau.
Siddiqi MR. 1976. Tylenchorhynchus annulatus (= T. martini). CI.H. Description of plant-parasitic nematodes. Set 6. No. 85. 2 pp. Farnham Royal, UK: Commonwealth Agricultural Bureau.
Siddiqi MR. 1986. Tylenchida parasites of plants and insects, 1st edn. Wallingford, UK: CABI Publishing.

Siddiqi MR. 2000. Tylenchida parasites of plants and insects, 2nd edn. Wallingford, UK: CABI Publishing.
Siddiqi MR, Mukherjee B, Dasgupta MK. 1982. Tylenchorhynchus microconus n. sp., T. crassicaudatus leviterminalis n. subsp. and T. coffeae Siddiqi \& Bask, 1959 (Nematoda: Tylenchida). Systematic Parasitology 4: 257262.

Starr JL. 1992. Nematode pathogen of sorghum. In: de Millano WAJ, Frederiksen RA, Bengston GD, eds. Sorghum and millet diseases: a second world review. Patancheru, India: International Research Institute for the Semi-Arid Tropics (ICRISAT), 179-185.
Steiner G. 1937. Opuscula miscellanea Nematologica V. Tylenchorhynchus claytoni n . sp. an apparently rare nemic parasite of the tobacco plant. Proceedings of the Helminthological Society of Washington 4: 33-34.
Sturhan, D. 2011. On lateral fields and deirids in Merliinae (Tylenchida, Telotylenchidae) and the genus Pratylenchoides (Pratylenchidae). Journal of Nematode Morphology and Systematics 14: 179-182.
Subbotin SA, Sturhan D, Chizhov VN, Vovlas N, Baldwin JG. 2006. Phylogenetic analysis of Tylenchida Thorne, 1949 as inferred from D2 and D3 expansion fragments of the 28 S rRNA gene sequences. Nematology 8: 455-474.
Subbotin SA, Vierstraete A, De Ley P, Rowe J, Waeyenberge L, Moens M, Vanfleteren JR. 2001. Phylogenetic relationships within the cyst-forming nematodes (Nematoda, Heteroderidae) based on analysis of sequences from the ITS regions of ribosomal DNA. Molecular Phylogenetics and Evolution 21: 1-16.
Swofford DL. 2003. PAUP*: phylogenetic analysis using parsimony (* and other methods), version 4.06 10. Sunderland, MA: Sinauer Associates.
Talavera M, Watanabe T, Mizukubo T. 2002. Description of Tylenchorhynchus shimizui n. sp. from Paraguay and notes on T. leviterminalis Siddiqi, Mukherjee \& Dasgupta from Japan (Nematoda: Tylenchida: Telotylenchidae). Systematic Parasitology 51: 171-177.

Tarjan AC. 1973. A synopsis of the genera and species in the Tylenchorhynchinae (Tylenchoidea, Nematoda). Proceedings of the Helminthological Society of Washington 40: 123144.

Timm RW. 1963. Tylenchorhynchus trilineatus n. sp. from West Pakistan, with notes on T. nudus and T. martini. Nematologica 9: 262-266.
Tobar-Jiménez A. 1969. Descripción del Tylenchorhynchus ventrosignatus sp. n. (Nematoda: Tylenchida). Revista Iberica de Parasitología 29: 399-403.
Troccoli A, Geraert E. 1995. Some species of Tylenchida (Nematoda) from Papua New Guinea. Nematologia Mediterranea 23: 283-298.
Vovlas N, Cham S. 1981. Scanning electron microscope observations on the morphology of Tylenchorhynchus aduncus. Nematologia Mediterranea 9: 91-97.
Vovlas N, Cheng H. 1988. Morpho-anatomy of Tylenchorhynchus leviterminalis from the People's Republic of China. Nematologia Mediterranea 16: 149-152.
Wiens JJ, Penkrot TA. 2002. Delimiting species using DNA and morphological variation and discordant species limits in spiny lizards (Sceloporus). Systematic Biology 51: 69-91.
Williams JR. 1960. Studies on the nematode soil fauna of sugar cane fields in Mauritius. 4. Tylenchoidea (Partim). Occasional Paper. Mauritius Sugar Industry Research Institute 4: 1-30.
Yildiz S, Handoo Z, Carta L, Skantar A, Chitwood D. 2012. The stunt nematode Sauertylenchus maximus (Allen) Siddiqi (Tylenchida) in pastures of Bingöl Province, Turkey. Journal of the Institute of Science and Technology 2: 17-28.
Zeidan A, Geraert E. 1990. The genus Tylenchorhynchus in Sudan (Nematoda Tylenchida). Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversteit Gent 55: 761778.

Zeng Y, Ye W, Martin SB, Martin M, Tredway L. 2012. Diversity and occurrence of plant-parasitic nematodes associated with golf course turfgrasses in north and south Carolina, USA. Journal of Nematology 44: 337-347.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher's web-site:
Figure S1. Photomicrographs of Paratrophurus bhutanensis (Ganguly et al., 2004) Andrássy, 2007. A, whole body of female; B , female pharyngeal region; C , female lip region; D , lateral fields at mid-body; E, vulval region; F, G, female tails. Scale bars: $A=50 \mu \mathrm{~m}, \mathrm{~B}=20 \mu \mathrm{~m} ; \mathrm{C}-\mathrm{G}=10 \mu \mathrm{~m}$.
Figure S2. Scanning electron microscope photographs of Paratrophurus bhutanensis (Ganguly et al., 2004) Andrássy, 2007. A, D, female anterior region; B, C, en face view showing oral (oa) and amphidial (am) apertures; E, vulval region; F, G, female tail; H, male tail. Scale bars: A, D, H $=20 \mu \mathrm{~m}$; B, C, E-G $=10 \mu \mathrm{~m}$.
Figure S3. Photomicrographs of Bitylenchus brevilineatus (Williams, 1960) Jairajpuri, 1982. A, female pharyngeal region; B, C, female lip region; D, female tail; E, male tail. Scale bars: A = $20 \mu \mathrm{~m}, \mathrm{~B}-\mathrm{E}=10 \mu \mathrm{~m}$.
Figure S4. Scanning electron microscope photographs of Bitylenchus brevilineatus (Williams, 1960) Jairajpuri, 1982. A, female anterior region; B, C, en face view showing oral (oa) and amphidial (am) apertures; D, lateral fields at mid-body; E-G, female tails; H, male tail. Scale bars: A-D, F, $=10 \mu \mathrm{~m} ; \mathrm{E}, \mathrm{G}, \mathrm{H}=20 \mu \mathrm{~m}$.
Figure S5. Photomicrographs of Bitylenchus iphilus Minagawa, 1995. A, whole body of female; B, female pharyngeal region showing excretory pore (arrowed); C, female lip region; D, vulval region; E-J, female tails showing anus and phasmid (arrowed); K, male tail. Scale bars: $\mathrm{A}=50 \mu \mathrm{~m}, \mathrm{~B}=20 \mu \mathrm{~m}$; C-K $=10 \mu \mathrm{~m}$.

Figure S6. Scanning electron microscope photographs of Bitylenchus iphilus Minagawa, 1995. A, female anterior region showing start of lateral fields (arrowed); B, C, female lip region; D , en face view showing oral (oa) and amphidial (am) apertures; E, lateral fields at mid-body showing areolated bands (arrowed); F, G, female tails showing anus (arrowed); H, male tail. Scale bars: A, B, E $=10 \mu \mathrm{~m} ; \mathrm{C}, \mathrm{D}=5 \mu \mathrm{~m} ; \mathrm{F}-\mathrm{H}=20 \mu \mathrm{~m}$.
Figure S7. Photomicrographs of Bitylenchus maximus (Allen, 1955) Siddiqi, 1976. A, female pharyngeal region; B, C, female lip region; D-F, female tails showing anus and phasmid (arrowed). Scale bars: A $=20 \mu \mathrm{~m}, \mathrm{~B}-\mathrm{F}=10 \mu \mathrm{~m}$. Figure S8. Scanning electron microscope photographs of Bitylenchus maximus (Allen, 1955) Siddiqi, 1976. A, female lip region; B, C, en face view showing oral (oa) and amphidial (am) apertures; D-F, female tails showing anus (a) and phasmid (p). Scale bars: $\mathrm{A}=2 \mu \mathrm{~m}$; B, C $=1 \mu \mathrm{~m} ; \mathrm{D}=2.5 \mu \mathrm{~m} ; \mathrm{E}, \mathrm{F}=5 \mu \mathrm{~m}$.
Figure S9. Photomicrographs of Bitylenchus ventrosignatus (Tobar-Jiménez, 1969) Jairajpuri, 1982. A, whole body of female and male; B, female pharyngeal region; C, D, female lip region; E, F, vulval region showing wave-like structures present close to the vulva (arrowed); G-I, female tails; J, male tail. Scale bars: A = $50 \mu \mathrm{~m}$, $B=20 \mu \mathrm{~m} ; \mathrm{C}-\mathrm{J}=10 \mu \mathrm{~m}$.
Figure S10. Scanning electron microscope photographs of Bitylenchus ventrosignatus (Tobar-Jiménez, 1969) Jairajpuri, 1982. A, B, female anterior region showing excretory pore (arrowed); C, en face view; D, E, ventral view of vulval region showing wave-like structures present (arrowed); F, lateral fields at mid-body; G, female tail showing anus (a); H, male tail. Scale bars: A, H $=20 \mu \mathrm{~m}$; B, C, F $=5 \mu \mathrm{~m} ; \mathrm{D}, \mathrm{E}, \mathrm{G}=100 \mu \mathrm{~m}$.
Figure S11. Photomicrographs of Tylenchorhynchus aduncus de Guiran, 1967. A, whole body of female and male; B , female pharyngeal region; C , female lip region; D , vulval region; E , lateral fields at mid-body; $\mathrm{F}-\mathrm{I}$, female tails; J, male tail. Scale bars: $\mathrm{A}=50 \mu \mathrm{~m}$, B $=20 \mu \mathrm{~m}$; C-J $=10 \mu \mathrm{~m}$.
Figure S12. Photomicrographs of Tylenchorhynchus agri Ferris, 1963. A, female lip region; B, detail of pharyngeal gland; C, lateral fields at mid-body; D, E, female tails. Scale bars: A-E = $10 \mu \mathrm{~m}$.
Figure S13. Photomicrographs of Tylenchorhynchus annulatus (Cassidy, 1930) Golden, 1971. A, female pharyngeal region showing adhered Pasteuria sp. spores and excretory pore (arrowed); B, vulval region; C, lateral fields at mid-body; D, E, female tails, showing anus and phasmid (arrowed). Scale bars: A-E = $25 \mu \mathrm{~m}$.
Figure S14. Photomicrographs of Tylenchorhynchus clarus Allen, 1955. A, whole body of female and male; B, female pharyngeal region showing excretory pore (ep); C, D, female lip region; E, lateral fields at mid-body; F, vulval and posterior region showing vulva (v) and anus (a); G, H, female tails; I, vulval region. Scale bars: $\mathrm{A}=50 \mu \mathrm{~m}, \mathrm{~B}, \mathrm{E}, \mathrm{F}=20 \mu \mathrm{~m} ; \mathrm{C}, \mathrm{D}, \mathrm{G}-\mathrm{I}=10 \mu \mathrm{~m}$.
Figure S15. Scanning electron microscope photographs of Tylenchorhynchus clarus Allen, 1955. A, female anterior region showing start of lateral fields (arrowed); B, en face view showing oral (oa) and amphidial (am) apertures, and lateral sectors (ls) fused to oral disc; C, lateral fields at mid-body; D, E, female tails. Scale bars: $\mathrm{A}-\mathrm{D}=10 \mu \mathrm{~m} ; \mathrm{E}=20 \mu \mathrm{~m}$.
Figure S16. Photomicrographs of Tylenchorhynchus claytoni Steiner, 1937. A, whole body of female; B, female pharyngeal region; C-E, female lip region; F, lateral fields at mid-body; G, H, male tails; I, female tail. Scale bars: $\mathrm{A}=50 \mu \mathrm{~m}, \mathrm{~B}=20 \mu \mathrm{~m}$; $\mathrm{C}-\mathrm{I}=10 \mu \mathrm{~m}$.
Figure S17. Photomicrographs of Tylenchorhynchus leviterminalis Siddiqi, Mukherjee \& Dasgupta, 1982. A, whole body of female; B, C, female lip region; D, vulval region; E, lateral fields at mid-body; F, G, female tails. Scale bars: $\mathrm{A}=50 \mu \mathrm{~m}, \mathrm{~B}-\mathrm{G}=10 \mu \mathrm{~m}$.
Figure S18. Photomicrographs of Tylenchorhynchus thermophilus Golden, Baldwin \& Mundo-Ocampo, 1995. A, female pharyngeal region; B , female lip region; C , whole body of female and male; D , male tail; E , F , female tails. Scale bars: A-F $=10 \mu \mathrm{~m}$.
Figure S19. Light and scanning electron microscope photographs of Tylenchorhynchus zeae Siddiqi, 1961 (A-D and $\mathrm{E}-\mathrm{H}$, respectively). A, female lip region; B , vulval region showing spermatheca (arrowed); C, female tail; D, male tail; E, F, female lip region; G, lateral fields at mid-body; H, male tail. Scale bars: A-D $10 \mu \mathrm{~m}$; E , $\mathrm{F}=10 \mu \mathrm{~m}, \mathrm{G}, \mathrm{H}=20 \mu \mathrm{~m}$.
Figure S20. Morphological character history reconstruction for tail tip annulations and inclination of stylet knobs using the phylogenetic tree obtained for the D2-D3 of the $28 S r R N A$ gene sequences. A, tail tip annulation; B, inclination of stylet knobs. The most representative value for each character was considered for the morphological matrix. The criterion of parsimony was used to optimize character state evolution on the maximum likelihood tree using MESQUITE 2.73.
Figure S21. Morphological character history reconstruction for the shape of tail terminus, shape of tail, and shape of lip region using the phylogenetic tree obtained for the D2-D3 of the $28 S r R N A$ gene sequences. A, shape of tail terminus; B, shape of tail; C, shape of lip region. The most representative value for each character was considered for the morphological matrix. The criterion of parsimony was used to optimize character state evolution on the maximum likelihood tree using MESQUITE 2.73.

Table S1. Morphometrics of Dolichodorus mediterraneus Jiménez-Guirado et al., 2007, Paratrophurus bhutanensis (Ganguly et al., 2004) Andrássy, 2007, Paratrophurus loofi Arias, 1970, and Paratrophurus striatus Castillo et al., 1989, from southern Spain.
Table S2. Morphometrics of Trophurus imperialis Loof, 1956, Tylenchorhynchus aduncus de Guiran, 1967, and Tylenchorhynchus annulatus (Cassidy, 1930) Golden, 1971, from southern Spain and California, USA.
Table S3. Morphometrics of Bitylenchus brevilineatus (Williams, 1960) Jairajpuri, 1982, and several populations of Tylenchorhynchus clarus Allen, 1955, from southern Spain.
Table S4. Morphometrics of several populations of Tylenchorhynchus clarus Allen, 1955, from southern Spain and from California, USA.
Table S5. Morphometrics of Tylenchorhynchus claytoni Steiner, 1937, Bitylenchus iphilus Minagawa, 1995, and Tylenchorhynchus leviterminalis Siddiqi, Mukherjee \& Dasgupta, 1982, from California, USA, and southern Spain. Table S6. Morphometrics of Bitylenchus maximus (Allen, 1955) Siddiqi, 1986, and Bitylenchus ventrosignatus (Tobar-Jiménez, 1969) Jairajpuri, 1982, from southern Spain.
Table S7. Morphometrics of several populations of Tylenchorhynchus zeae Sethi \& Swarup, 1968, from southern Spain.
Table S8. Morphometrics of Tylenchorhynchus agri Ferris, 1963, Tylenchorhynchus thermophilus Golden, Baldwin \& Mundo-Ocampo, 1995, and Telotylenchus sp. from the USA.

A

(D)

B	C

A

G

A
$A \cap B$

	C

D
.

,
14 (ancen

(H)
(F)

T
\square

\section*{D

7, $4-3$ $\frac{2}{2}-$

 }

H

Colt

E Coles)

,
8

F

A

Lan.
(v)

DITH

\square
\square11
\square
3
+3
-3 (2)

G
 3 H
 1
 B H
 ch:
 P
 9

memennmencric:

A

D E

4
 "四

$$
\square
$$

 A

 A A A A
 chay

D な $8=$
8
8
8
8
8

Quasex
.

$$
5
$$

ald

355
\qquad

(1)
$18 \pi^{2}$

Table S1. Morphometrics of Dolichodorus mediterraneus Jiménez Guirado et al., 2007, Paratrophurus bhutanensis (Ganguly, Lal \& Procter, 2004) Andrássy, 2007, Paratrophurus loofi Arias, 1970, and Paratrophurus striatus Castillo et al. 1989 from southern Spain*.

Species Locality host-plant	Dolichodorus mediterraneus		Paratrophurus bhutanensis		Paratrophurus loofi		Paratrophurus striatus	
	Tarifa, Cádiz, Spain wild olive		Niebla, Huelva, Spain fig tree		Coto Ríos, Jaén, Spain ash tree		Arroyo Frío, Jaén, Spain black poplar	
	Females	Males	Females	Males	Females	Males	Females	Males
n	12	12	10	5	4	4	4	4
$L^{\text {a }}$	$\begin{aligned} & 1838 \pm 210.1 \\ & (1483-2172) \end{aligned}$	$\begin{gathered} 1594 \pm 157.4 \\ (1428-1828) \end{gathered}$	$\begin{aligned} & 523 \pm 54.4 \\ & (465-595) \end{aligned}$	$\begin{gathered} 555 \pm 56.3 \\ (490-610) \end{gathered}$	$\begin{gathered} 668 \pm 74.3 \\ (569-749) \end{gathered}$	$\begin{gathered} 594 \pm 44.2 \\ (531-630) \end{gathered}$	$\begin{gathered} 777 \pm 116.6 \\ (623-878) \end{gathered}$	$\begin{aligned} & 723 \pm 62.3 \\ & (645-794) \end{aligned}$
a	$\begin{gathered} 60.7 \pm 6.6 \\ (48.3-68.0) \end{gathered}$	$\begin{gathered} 63.6 \pm 8.9 \\ (54.2-83.1) \end{gathered}$	$\begin{gathered} 28.8 \pm 1.6 \\ (26.4-31.0) \end{gathered}$	$\begin{gathered} 33.1 \pm 1.7 \\ (31.6-35.9) \end{gathered}$	$\begin{gathered} 32.7 \pm 1.3 \\ (30.9-33.7) \end{gathered}$	$\begin{gathered} 33.9 \pm 1.8 \\ (31.2-35.2) \end{gathered}$	$\begin{gathered} 30.7 \pm 1.0 \\ (29.7-31.7) \end{gathered}$	$\begin{gathered} 30.8 \pm 0.9 \\ (29.7-31.8) \end{gathered}$
b	$\begin{aligned} & 7.8 \pm 0.8 \\ & (6.4-9.4) \end{aligned}$	$\begin{aligned} & 7.5 \pm 0.7 \\ & (6.5-8.9) \end{aligned}$	$\begin{aligned} & 4.9 \pm 0.4 \\ & (4.2-5.4) \end{aligned}$	$\begin{aligned} & 5.3 \pm 0.4 \\ & (4.9-6.0) \end{aligned}$	$\begin{aligned} & 5.4 \pm 0.4 \\ & (4.9-5.8) \end{aligned}$	$\begin{aligned} & 5.8 \pm 0.2 \\ & (5.6-6.0) \end{aligned}$	$\begin{aligned} & 5.7 \pm 0.2 \\ & (5.5-5.9) \end{aligned}$	$\begin{aligned} & 5.4 \pm 0.1 \\ & (5.3-5.5) \end{aligned}$
c	$\begin{gathered} 20.6 \pm 2.6 \\ (16.6-25.9) \end{gathered}$	$\begin{aligned} & 49.8 \pm 7.9 \\ & (39.8-63.0) \end{aligned}$	$\begin{gathered} 17.1 \pm 1.3 \\ (15.5-19.4) \end{gathered}$	$\begin{gathered} 17.2 \pm 1.8 \\ (15.2-19.7) \end{gathered}$	$\begin{gathered} 17.2 \pm 1.1 \\ (15.8-18.4) \end{gathered}$	$\begin{gathered} 13.5 \pm 0.6 \\ (12.9-14.0) \end{gathered}$	$\begin{gathered} 20.8 \pm 0.5 \\ (20.4-21.5) \end{gathered}$	$\begin{gathered} 18.7 \pm 0.3 \\ (18.2-19.0) \end{gathered}$
c^{\prime}	$\begin{aligned} & 3.4 \pm 0.6 \\ & (2.7-4.5) \end{aligned}$	$\begin{aligned} & 1.5 \pm 0.2 \\ & (1.1-1.9) \end{aligned}$	$\begin{aligned} & 2.4 \pm 0.1 \\ & (2.2-2.7) \end{aligned}$	$\begin{aligned} & 2.9 \pm 0.2 \\ & (2.7-3.3) \end{aligned}$	$\begin{aligned} & 2.5 \pm 0.1 \\ & (2.3-2.5) \end{aligned}$	$\begin{aligned} & 2.9 \pm 0.2 \\ & (2.7-3.2) \end{aligned}$	$\begin{aligned} & 2.1 \pm 0.1 \\ & (1.9-2.2) \end{aligned}$	$\begin{aligned} & 2.1 \pm 0.1 \\ & (2.0-2.2) \end{aligned}$
V or T \%	$\begin{gathered} 52.1 \pm 1.5 \\ (50.0-54.0) \end{gathered}$	$\begin{gathered} 43.9 \pm 5.9 \\ (35.0-54.0) \end{gathered}$	$\begin{gathered} 59.0 \pm 2.4 \\ (55.0-62.0) \end{gathered}$	(2.7-3.3)	$\begin{gathered} 56.5 \pm 1.3 \\ (55.0-58.0) \end{gathered}$	(2.7-3.2)	$\begin{gathered} 54.0 \pm 2.2 \\ (51.0-56.0) \end{gathered}$	$\begin{aligned} & 46.5 \pm 11.6 \\ & (30.0-57.0) \end{aligned}$
Stylet length	$\begin{gathered} 94.6 \pm 5.3 \\ (83.0-99.0) \end{gathered}$	$\begin{gathered} 90.5 \pm 4.4 \\ (81.0-95.0) \end{gathered}$	$\begin{gathered} 20.1 \pm 0.3 \\ (20.0-21.0) \end{gathered}$	$\begin{gathered} 19.4 \pm 0.9 \\ (18.0-20.0) \end{gathered}$	$\begin{gathered} 20.8 \pm 1.3 \\ (19.0-22.0) \end{gathered}$	$\begin{gathered} 20.3 \pm 1.0 \\ (19.0-21.0) \end{gathered}$	$\begin{gathered} 21.0 \pm 1.8 \\ (19.0-23.0) \end{gathered}$	$\begin{gathered} 20.8 \pm 1.5 \\ (19.0-22.0) \end{gathered}$
Max. body width	$\begin{gathered} 39.9 \pm 6.7 \\ (25.0-45.0) \end{gathered}$	$\begin{gathered} 24.8 \pm 3.8 \\ (21.0-29.0) \end{gathered}$	$\begin{gathered} 18.3 \pm 2.4 \\ (15.0-22.5) \end{gathered}$	$\begin{gathered} 16.8 \pm 1.8 \\ (15.0-19.0) \end{gathered}$	$\begin{aligned} & 20.5 \pm 2.6 \\ & (17.0-23 .) \end{aligned}$	$\begin{gathered} 17.5 \pm 0.6 \\ (17.0-18.0) \end{gathered}$	$\begin{gathered} 25.3 \pm 3.1 \\ (21.0-28.0) \end{gathered}$	$\begin{gathered} 23.5 \pm 1.9 \\ (21.0-25.0) \end{gathered}$
Pharynx length	$\begin{gathered} 237.8 \pm 29.8 \\ (198.0-298.0) \end{gathered}$	$\begin{gathered} 212.0 \pm 17.7 \\ (176.0-230.0) \end{gathered}$	$\begin{gathered} 106.2 \pm 4.9 \\ (95.0-110.0) \end{gathered}$	$\begin{gathered} 104.0 \pm 4.3 \\ (100.0-110.0) \end{gathered}$	$\begin{gathered} 124.3 \pm 19.5 \\ (100.0-141.0) \end{gathered}$	$\begin{aligned} & 103.0 \pm 10.2 \\ & (89.0-112.0) \end{aligned}$	$\begin{gathered} 135.8 \pm 16.7 \\ (112.0-148.0) \end{gathered}$	$\begin{gathered} 133.8 \pm 11.0 \\ (120.0-144.0) \end{gathered}$
Ant. end to Excretory pore	$\begin{gathered} 153.9 \pm 27.3 \\ (124.0-215.0) \end{gathered}$	$\begin{gathered} 136.1 \pm 16.4 \\ (104.0-146.0) \end{gathered}$	$\begin{gathered} 87.1 \pm 5.8 \\ (75.0-95.0) \end{gathered}$	$\begin{gathered} 91.8 \pm 4.7 \\ (85.0-97.0) \end{gathered}$	$\begin{gathered} 91.5 \pm 11.9 \\ (78.0-105.0) \end{gathered}$	$\begin{gathered} 88.3 \pm 11.1 \\ (78.0-101.0) \end{gathered}$	$\begin{aligned} & 108.5 \pm 15.8 \\ & (86.0-121.0) \end{aligned}$	$\begin{aligned} & 102.8 \pm 10.2 \\ & (89.0-111.0) \end{aligned}$
Anal body width	$\begin{gathered} 26.5 \pm 3.5 \\ (21.0-32.0) \end{gathered}$	$\begin{gathered} 21.5 \pm 2.3 \\ (18.0-24.0) \end{gathered}$	$\begin{gathered} 12.8 \pm 1.3 \\ (11.0-15.0) \end{gathered}$	$\begin{gathered} 11.2 \pm 0.8 \\ (10.0-12.0) \end{gathered}$	$\begin{gathered} 15.8 \pm 2.2 \\ (13.0-18.0) \end{gathered}$	$\begin{gathered} 15.0 \pm 0.8 \\ (14.0-16.0) \end{gathered}$	$\begin{gathered} 17.8 \pm 2.2 \\ (15.0-20.0) \end{gathered}$	$\begin{gathered} 18.3 \pm 1.0 \\ (17.0-19.0) \end{gathered}$
Tail length	$\begin{gathered} 89.9 \pm 11.6 \\ (77.0-122.0) \end{gathered}$	$\begin{gathered} 32.9 \pm 2.4 \\ (29.0-36.0) \end{gathered}$	$\begin{gathered} 30.6 \pm 2.1 \\ (27.0-34.0) \end{gathered}$	$\begin{gathered} 32.4 \pm 1.9 \\ (30.0-35.0) \end{gathered}$	$\begin{gathered} 39.0 \pm 5.9 \\ (31.0-44.0) \end{gathered}$	$\begin{gathered} 44.3 \pm 4.8 \\ (38.0-48.0) \end{gathered}$	$\begin{gathered} 37.5 \pm 6.5 \\ (29.0-43.0) \end{gathered}$	$\begin{gathered} 38.8 \pm 3.4 \\ (34.0-42.0) \end{gathered}$
Tail annuli	-	-	$\begin{gathered} 18.9 \pm 2.8 \\ (16-25) \end{gathered}$	-	$\begin{gathered} 30.3 \pm 4.6 \\ (24-35) \end{gathered}$	-	$\begin{gathered} 30.8 \pm 5.0 \\ (24-35) \end{gathered}$	-
Spicule	-	$\begin{gathered} 37.9 \pm 2.4 \\ (34.0-42.0) \end{gathered}$	-	$\begin{gathered} 21.5 \pm 1.0 \\ (20.0-22.5) \end{gathered}$	-	$\begin{gathered} 21.8 \pm 1.7 \\ (20.0-24.0) \end{gathered}$	-	$\begin{gathered} 31.5 \pm 1.9 \\ (29.0-33.0) \end{gathered}$
Gubernaculum	-	$\begin{array}{r} 18.8 \pm 1.6 \\ (17.0-22.0) \\ \hline \end{array}$	-	$\begin{array}{r} 10.2 \pm 0.8 \\ (9.0-11.0) \\ \hline \end{array}$	-	$\begin{array}{r} 10.8 \pm 1.0 \\ (10.0-12.0) \\ \hline \end{array}$	-	$\begin{array}{r} 15.0 \pm 0.8 \\ (14.0-16.0) \\ \hline \end{array}$

[^8]Table S2. Morphometrics of Trophurus imperialis Loof, 1956, Tylenchorhynchus aduncus de Guiran, 1967, and Tylenchorhynchus annulatus (Cassidy, 1930) Golden, 1971 from southern Spain and California, USA*

Species Locality host-plant	Trophurus imperialis		Tylenchorhynchus aduncus		Tylenchorhynchus aduncus		Tylenchorhynchus annulatus
	Lebrija, Sevilla, Spain grapevine		Conil de la Frontera, Cádiz, Spain sharp rush		Sanlúcar de Barrameda, Cádiz, Spain wild olive		Napa County, California, USA undetermined grasses
	Females	Males	Females	Males	Females	Males	Females
n	5	3	7	2	3	2	2
$\mathrm{L}^{\text {a }}$	$\begin{aligned} & 1075 \pm 91.9 \\ & (965-1198) \end{aligned}$	$\begin{gathered} 949 \pm 61.7 \\ (880-998) \end{gathered}$	$\begin{aligned} & 720 \pm 41.6 \\ & (690-810) \end{aligned}$	$\begin{gathered} 975 \pm 14.1 \\ (665-685) \end{gathered}$	$\begin{aligned} & 789 \pm 82.9 \\ & (695-850) \end{aligned}$	$\begin{aligned} & 775 \pm 41.1 \\ & (730-810) \end{aligned}$	$\begin{gathered} 640 \pm 28.3 \\ (620-660) \end{gathered}$
a	$\begin{gathered} 40.4 \pm 2.4 \\ (37.3-42.8) \end{gathered}$	$\begin{gathered} 36.0 \pm 1.9 \\ (33.8-37.0) \end{gathered}$	$\begin{gathered} 26.8 \pm 1.7 \\ (25.1-28.9) \end{gathered}$	$\begin{gathered} 28.5 \pm 1.5 \\ (27.4-29.6) \end{gathered}$	$\begin{gathered} 28.1 \pm 2.3 \\ (25.7-30.4) \end{gathered}$	$\begin{gathered} 28.7 \pm 0.6 \\ (28.1-28.9) \end{gathered}$	$\begin{gathered} 30.8 \pm 0.2 \\ (30.7-31.0) \end{gathered}$
b	$\begin{gathered} 9.7 \pm 0.4 \\ (9.4-10.3) \end{gathered}$	$\begin{aligned} & 9.1 \pm 0.2 \\ & (8.9-9.2) \end{aligned}$	$\begin{aligned} & 5.6 \pm 0.1 \\ & (5.4-5.8) \end{aligned}$	$\begin{aligned} & 5.6 \pm 0.1 \\ & (5.5-5.7) \end{aligned}$	$\begin{aligned} & 6.0 \pm 0.3 \\ & (5.8-6.0) \end{aligned}$	$\begin{aligned} & 7.7 \pm 1.5 \\ & (6.0-9.0) \end{aligned}$	$\begin{aligned} & 4.5 \pm 0.3 \\ & (4.3-4.7) \end{aligned}$
c	$\begin{gathered} 28.8 \pm 2.3 \\ (26.1-31.5) \end{gathered}$	$\begin{gathered} 19.8 \pm 0.9 \\ (18.7-20.4) \end{gathered}$	$\begin{gathered} 16.8 \pm 1.0 \\ (15.6-17.9) \end{gathered}$	$\begin{gathered} 13.6 \pm 0.3 \\ (13.4-13.9) \end{gathered}$	$\begin{gathered} 18.9 \pm 1.4 \\ (17.4-19.3) \end{gathered}$	$\begin{gathered} 15.4 \pm 0.4 \\ (14.9-15.6) \end{gathered}$	$\begin{gathered} 15.3 \pm 0.3 \\ (15.1-15.5) \end{gathered}$
c^{\prime}	$\begin{gathered} 1.6 \pm 0.04 \\ (1.5-1.7) \end{gathered}$	$\begin{aligned} & 2.1 \pm 0.1 \\ & (2.0-2.1) \end{aligned}$	$\begin{aligned} & 2.1 \pm 0.2 \\ & (1.9-2.3) \end{aligned}$	(13.4.9)	$\begin{gathered} 2.1 \pm 0.06 \\ (2.1-2.2) \end{gathered}$	$\begin{aligned} & 2.4 \pm 0.2 \\ & (2.2-2.6) \end{aligned}$	$\begin{aligned} & 3.2 \pm 0.1 \\ & (3.1-3.3) \end{aligned}$
V or T \%	$\begin{gathered} 55.4 \pm 2.1 \\ (53.0-58.0) \end{gathered}$	$\begin{gathered} 30.3 \pm 8.0 \\ (22.0-38.0) \end{gathered}$	$\begin{gathered} 58.6 \pm 1.1 \\ (57.0-59.5) \end{gathered}$	-	$\begin{gathered} 59.0 \pm 1.0 \\ (58.0-60.0) \end{gathered}$	$\begin{gathered} 29.0 \pm 6.2 \\ (22.0-34.0) \end{gathered}$	$\begin{gathered} 53.7 \pm 1.8 \\ (52.0-55.0) \end{gathered}$
Stylet length	$\begin{gathered} 18.9 \pm 1.2 \\ (17.0-20.0) \end{gathered}$	$\begin{gathered} 18.0 \pm 1.0 \\ (17.0-19.0) \end{gathered}$	$\begin{gathered} 19.9 \pm 0.7 \\ (19.0-21.0) \end{gathered}$	$\begin{gathered} 19.5 \pm 0.7 \\ (19.0-20.0) \end{gathered}$	$\begin{gathered} 18.5 \pm 1.5 \\ (17.0-20.0) \end{gathered}$	$\begin{gathered} 18.0 \pm 1.0 \\ (17.0-19.0) \end{gathered}$	$\begin{gathered} 20.5 \pm 0.7 \\ (20.0-21.0) \end{gathered}$
Max. body width	$\begin{gathered} 26.6 \pm 1.1 \\ (25.0-28.0) \end{gathered}$	$\begin{gathered} 26.3 \pm 0.6 \\ (26.0-27.0) \end{gathered}$	$\begin{gathered} 26.8 \pm 1.4 \\ (25.0-28.0) \end{gathered}$	$\begin{gathered} 23.8 \pm 1.8 \\ (22.5-25.0) \end{gathered}$	$\begin{gathered} 28.0 \pm 1.0 \\ (27.0-29.0) \end{gathered}$	$\begin{gathered} 27.0 \pm 1.0 \\ (26.0-28.0) \end{gathered}$	$\begin{gathered} 20.8 \pm 1.1 \\ (20.0-21.5) \end{gathered}$
Pharynx length	$\begin{gathered} 115.2 \pm 8.6 \\ (102.0-126.0) \end{gathered}$	$\begin{gathered} 112.3 \pm 3.5 \\ (109.0-116.0) \end{gathered}$	$\begin{gathered} 145.0 \pm 8.7 \\ (135.0-150.0) \end{gathered}$	$\begin{gathered} 120.0 \pm 0.0 \\ (120.0-120.0) \end{gathered}$	$\begin{gathered} 130.7 \pm 11.0 \\ (120.0-142.0) \end{gathered}$	$\begin{gathered} 135.7 \pm 6.0 \\ (130.0-142.0) \end{gathered}$	$\begin{gathered} 142.5 \pm 3.5 \\ (140.0-145.0) \end{gathered}$
Ant. end to Excretory pore	$\begin{gathered} 110.8 \pm 6.1 \\ (102.0-116.0) \end{gathered}$	$\begin{gathered} 104.0 \pm 5.0 \\ (99.0-109.0) \end{gathered}$	$\begin{gathered} 127.5 \pm 6.9 \\ (120.0-140.0) \end{gathered}$	(120.0-120.0)	$\begin{gathered} 126.3 \pm 2.1 \\ (124.0-128.0) \end{gathered}$	$\begin{gathered} 112.3 \pm 3.5 \\ (109.0-116.0) \end{gathered}$	$\begin{gathered} 99.0 \pm 1.4 \\ (98.0-100.0) \end{gathered}$
Anal body width	$\begin{gathered} 23.4 \pm 0.5 \\ (23.0-24.0) \end{gathered}$	$\begin{aligned} & 22.7 \pm 1.2 \\ & (22.0-24.0) \end{aligned}$	$\begin{gathered} 20.6 \pm 0.8 \\ (20.0-22.0) \end{gathered}$	-	$\begin{gathered} 19.5 \pm 0.5 \\ (19.0-20.0) \end{gathered}$	$\begin{gathered} 21.0 \pm 1.0 \\ (20.0-22.0) \end{gathered}$	$\begin{gathered} 13.0 \pm 0.7 \\ (12.5-13.5) \end{gathered}$
Tail length	$\begin{gathered} 37.3 \pm 1.0 \\ (36.0-38.0) \end{gathered}$	$\begin{aligned} & 48.0 \pm 1.0 \\ & (47.0-49.0) \end{aligned}$	$\begin{aligned} & 43.1 \pm 4.1 \\ & (40.0-51.0) \end{aligned}$	$\begin{gathered} 49.5 \pm 2.1 \\ (48.0-51.0) \end{gathered}$	$\begin{gathered} 41.7 \pm 2.1 \\ (40.0-44.0) \end{gathered}$	$\begin{gathered} 50.3 \pm 1.5 \\ (49.0-52.0) \end{gathered}$	$\begin{gathered} 17.5 \pm 07 \\ (17.0-18.0) \end{gathered}$
Tail annuli	-	-	$\begin{gathered} 23.7 \pm 2.8 \\ (20-27) \end{gathered}$	-	$\begin{gathered} 20.0 \pm 2.0 \\ (18-22) \end{gathered}$	-	-
Spicule	-	$\begin{gathered} 22.3 \pm 2.5 \\ (20.0-25.0) \end{gathered}$	-	$\begin{gathered} 26.3 \pm 1.8 \\ (25.0-27.5) \end{gathered}$	-	$\begin{gathered} 22.3 \pm 2.5 \\ (20.0-25.0) \end{gathered}$	-
Gubernaculum	-	$\begin{aligned} & 7.7 \pm 1.5 \\ & (6.0-9.0) \\ & \hline \end{aligned}$	-	$\begin{gathered} 9.5 \pm 0.7 \\ (9.0-10.0) \\ \hline \end{gathered}$	-	$\begin{aligned} & 7.7 \pm 1.5 \\ & (6.0-9.0) \\ & \hline \end{aligned}$	-

[^9]Table S3. Morphometrics of Bitylenchus brevilineatus (Williams, 1960) Jairajpuri, 1982, and several populations of Tylenchorhynchus clarus Allen, 1955 from southern Spain*.

Species Locality host-plant	Bitylenchus brevilineatus		Tylenchorhynchus clarus		Tylenchorhynchus clarus		Tylenchorhynchus clarus	
	Villalba del Alcor, Huelva, Spain eucalyptus		Niebla, Huelva, Spain fig tree		Chucena, Huelva, Spain cork oak		Sanlúcar de Barrameda, Cádiz, Spain tamarisk	
	Females	Male	Females	Males	Females	Male	Females	Males
n	6	1	10	5	6	1	4	3
$L^{\text {a }}$	$\begin{aligned} & 681 \pm 105 \\ & (520-782) \end{aligned}$	720	$\begin{aligned} & 517 \pm 39.1 \\ & (467-578) \end{aligned}$	$\begin{aligned} & 501 \pm 24.8 \\ & (470-537) \end{aligned}$	$\begin{aligned} & 530 \pm 28.3 \\ & (480-548) \end{aligned}$	470	$\begin{aligned} & 513 \pm 31.2 \\ & (475-550) \end{aligned}$	$\begin{aligned} & 500 \pm 10.0 \\ & (490-510) \end{aligned}$
a	$\begin{gathered} 33.1 \pm 2.7 \\ (28.6-35.5) \end{gathered}$	35.4	$\begin{gathered} 32.7 \pm 2.6 \\ (28.2-36.7) \end{gathered}$	$\begin{gathered} 34.8 \pm 1.0 \\ (33.6-35.8) \end{gathered}$	$\begin{gathered} 32.0 \pm 1.3 \\ (30.7-34.1) \end{gathered}$	29.4	$\begin{gathered} 34.3 \pm 2.7 \\ (31.6-36.7) \end{gathered}$	$\begin{gathered} 34.9 \pm 0.9 \\ (34.0-35.7) \end{gathered}$
b	$\begin{aligned} & 5.3 \pm 0.3 \\ & (5.0 .5 .8) \end{aligned}$	5.4	$\begin{aligned} & 4.6 \pm 0.3 \\ & (4.2-5.2) \end{aligned}$	$\begin{aligned} & 4.6 \pm 0.3 \\ & (4.3-5.0) \end{aligned}$	$\begin{aligned} & 4.9 \pm 0.4 \\ & (4.5-5.4) \end{aligned}$	4.4	$\begin{aligned} & 4.6 \pm 0.4 \\ & (4.2-5.2) \end{aligned}$	$\begin{aligned} & 4.6 \pm 0.4 \\ & (4.3-5.0) \end{aligned}$
c	$\begin{gathered} 16.9 \pm 2.2 \\ (14.4-16.6) \end{gathered}$	23.2	$\begin{gathered} 18.7 \pm 2.0 \\ (16.7-22.2) \end{gathered}$	$\begin{gathered} 18.1 \pm 1.9 \\ (15.7-20.7) \end{gathered}$	$\begin{gathered} 19.7 \pm 0.8 \\ (18.9-21.0) \end{gathered}$	17.7	$\begin{gathered} 17.7 \pm 0.7 \\ (16.8-18.3) \end{gathered}$	$\begin{gathered} 18.1 \pm 1.1 \\ (17.0-19.0) \end{gathered}$
c^{\prime}	$\begin{aligned} & 3.1 \pm 0.6 \\ & (2.6-3.9) \end{aligned}$	-	$\begin{aligned} & 2.7 \pm 0.2 \\ & (2.3-3.1) \end{aligned}$	$\begin{aligned} & 3.1 \pm 0.2 \\ & (2.9-3.3) \end{aligned}$	$\begin{aligned} & 2.5 \pm 0.1 \\ & (2.3-2.6) \end{aligned}$	1.9)	$\begin{aligned} & 2.9 \pm 0.2 \\ & (2.7-3.1) \end{aligned}$	$\begin{aligned} & 3.0 \pm 0.1 \\ & (2.9-3.0) \end{aligned}$
V \%	$\begin{gathered} 54.7 \pm 2.2 \\ (52.9-57.7) \end{gathered}$	-	$\begin{gathered} 58.5 \pm 1.6 \\ (56.4-61.0) \end{gathered}$	-	$\begin{gathered} 59.6 \pm 1.6 \\ (57.5-62.0) \end{gathered}$	-	$\begin{gathered} 58.2 \pm 2.0 \\ (56.4-61.0) \end{gathered}$	-
Stylet length	$\begin{gathered} 16.0 \pm 1.4 \\ (15.0-17.0) \end{gathered}$	15.5	$\begin{gathered} 16.7 \pm 0.5 \\ (16.0-17.0) \end{gathered}$	$\begin{gathered} 15.9 \pm 0.7 \\ (15.0-17.0) \end{gathered}$	$\begin{gathered} 16.7 \pm 0.9 \\ (15.0-17.5) \end{gathered}$	15	$\begin{aligned} & 16.8 \pm 0.5 \\ & (16.0-17.0) \end{aligned}$	$\begin{gathered} 15.8 \pm 1.0 \\ (15.0-17.0) \end{gathered}$
Max. body width	$\begin{gathered} 21.5 \pm 1.0 \\ (20.0-22.5) \end{gathered}$	17.5	$\begin{gathered} 15.9 \pm 1.7 \\ (13.0-19.0) \end{gathered}$	$\begin{gathered} 14.4 \pm 0.5 \\ (14.0-15.0) \end{gathered}$	$\begin{gathered} 16.6 \pm 1.1 \\ (15.0-17.5) \end{gathered}$	16	$\begin{gathered} 15.0 \pm 1.4 \\ (13.0-16.0) \end{gathered}$	$\begin{gathered} 14.3 \pm 0.6 \\ (14.0-15.0) \end{gathered}$
Pharynx length	$\begin{gathered} 125.4 \pm 17.0 \\ (100.0-145.0) \end{gathered}$	133.5	$\begin{gathered} 113.9 \pm 7.6 \\ (100.0-122.0) \end{gathered}$	$\begin{gathered} 108.4 \pm 8.5 \\ (100.0-120.0) \end{gathered}$	$\begin{gathered} 109.2 \pm 9.0 \\ (101.0-122.0) \end{gathered}$	107	$\begin{gathered} 112.5 \pm 9.6 \\ (100.0-120.0) \end{gathered}$	$\begin{gathered} 110.0 \pm 10.0 \\ (100.0- \\ 120.0) \end{gathered}$
Ant. end to Excretory pore	${ }^{-}$	-	$\begin{gathered} 83.5 \pm 4.1 \\ (80.0-90.0) \end{gathered}$	$\begin{gathered} 79.0 \pm 8.2 \\ (70.0-90.0) \end{gathered}$	${ }^{-}$	-	$\begin{gathered} 83.3 \pm 2.9 \\ (80.0-85.0) \end{gathered}$	$\begin{gathered} 80.0 \pm 8.7 \\ (75.0-90.0) \end{gathered}$
Anal body width	$\begin{gathered} 14.3 \pm 1.5 \\ (13.0-16.0) \end{gathered}$	-	$\begin{gathered} 10.4 \pm 0.7 \\ (10.0-12.0) \end{gathered}$	$\begin{gathered} 9.3 \pm 0.5 \\ (9.0-10.0) \end{gathered}$	$\begin{gathered} 10.9 \pm 0.5 \\ (10.0-11.5) \end{gathered}$	10	$\begin{gathered} 10.1 \pm 0.3 \\ (10.0-10.5) \end{gathered}$	$\begin{gathered} 9.3 \pm 0.6 \\ (10.0-9.0) \end{gathered}$
Tail length	$\begin{gathered} 44.7 \pm 8.3 \\ (38.0-54.0) \end{gathered}$	31.0	$\begin{gathered} 27.9 \pm 2.3 \\ (25.0-32.0) \end{gathered}$	$\begin{gathered} 27.8 \pm 2.0 \\ (26.0-30.0) \end{gathered}$	$\begin{gathered} 26.9 \pm 1.5 \\ (25.0-29.0) \end{gathered}$	26.5	$\begin{gathered} 29.0 \pm 1.8 \\ (27.0-31.0) \end{gathered}$	$\begin{gathered} 27.7 \pm 2.1 \\ (26.0-30.0) \end{gathered}$
Tail annuli	$\begin{gathered} 36.3 \pm 5.9 \\ (32-43) \end{gathered}$	-	$\begin{gathered} 13.7 \pm 1.9 \\ (10-16) \end{gathered}$	-	$\begin{gathered} 10.3 \pm 0.5 \\ (10-11) \end{gathered}$	-	$\begin{gathered} 13.8 \pm 1.0 \\ (13-15) \end{gathered}$	-
Spicule	-	25.0	-	$\begin{gathered} 18.0 \pm 1.2 \\ (17.0-20.0) \end{gathered}$	-	17.5	-	$\begin{gathered} 17.7 \pm 0.6 \\ (17.0-18.0) \end{gathered}$
Gubernaculum	-	12.5	-	$\begin{gathered} 9.8 \pm 0.4 \\ (9.0-10.0) \\ \hline \end{gathered}$	-	10	-	$\begin{array}{r} 9.7 \pm 0.6 \\ (9.0-10.0) \\ \hline \end{array}$

[^10]Table S4. Morphometrics of several populations of Tylenchorhynchus clarus Allen, 1955 from southern Spain and California, USA*.

Species Locality host-plant	Tylenchorhynchus clarus		Tylenchorhynchus clarus		Tylenchorhynchus clarus	Tylenchorhynchus clarus
	Niebla, Huelva, Spain wheat		Jerez de la Frontera, Cádiz, Spain sunflower		Merced County, California, USA alfalfa	Calusa County, California, USA grapevine
	Females	Male	Females	Males	Females	Female
n	2	1	3	3	5	1
$L^{\text {a }}$	$\begin{gathered} 509 \pm 5.3 \\ (505-513) \end{gathered}$	489	$\begin{aligned} & 503 \pm 31.4 \\ & (468-528) \end{aligned}$	$\begin{aligned} & 501 \pm 12.5 \\ & (489-514) \end{aligned}$	$\begin{gathered} 610 \pm 52.3 \\ (570-687) \end{gathered}$	575,0
a	$\begin{gathered} 32.9 \pm 1.9 \\ (31.6-34.3) \end{gathered}$	32.6	$\begin{gathered} 32.9 \pm 0.7 \\ (32.1-33.4) \end{gathered}$	$\begin{gathered} 35.0 \pm 0.7 \\ (34.3-35.7) \end{gathered}$	$\begin{gathered} 29.5 \pm 3.0 \\ (25.0-32.7) \end{gathered}$	32,9
b	$\begin{aligned} & 4.4 \pm 0.3 \\ & (4.2 .4 .6) \end{aligned}$	4.1	$\begin{aligned} & 4.7 \pm 0.5 \\ & (4.3-5.2) \end{aligned}$	$\begin{aligned} & 4.7 \pm 0.3 \\ & (4.4-5.1) \end{aligned}$	$\begin{aligned} & 4.4 \pm 0.7 \\ & (3.8-5.0) \end{aligned}$	4,8
c	$\begin{gathered} 17.9 \pm 0.2 \\ (17.7-18.0) \end{gathered}$	16.3	$\begin{gathered} 17.6 \pm 0.2 \\ (17.3-17.7) \end{gathered}$	$\begin{gathered} 18.2 \pm 1.6 \\ (16.3-19.2) \end{gathered}$	$\begin{gathered} 13.3 \pm 1.4 \\ (12.1-15.7) \end{gathered}$	12,8
c^{\prime}	$\begin{aligned} & 2.8 \pm 0.1 \\ & (2.8-2.9) \end{aligned}$	3.0	$\begin{aligned} & 2.7 \pm 0.1 \\ & (2.6-2.9) \end{aligned}$	$\begin{aligned} & 3.0 \pm 0.1 \\ & (2.9-3.0) \end{aligned}$	$\begin{aligned} & 3.6 \pm 0.6 \\ & (2.7-4.3) \end{aligned}$	3,8
V or T \%	$\begin{gathered} 57.3 \pm 1.3 \\ (56.4-58.2) \end{gathered}$	34.0-	$\begin{gathered} 57.7 \pm 1.5 \\ (56.0-59.0) \end{gathered}$	(2.9.0)	$\begin{gathered} 54.4 \pm 2.5 \\ (50.0-56.0) \end{gathered}$	57.0
Stylet length	$\begin{gathered} 16.8 \pm 0.4 \\ (16.5-17.0) \end{gathered}$	17.0	$\begin{gathered} 16.8 \pm 0.8 \\ (16.0-17.5) \end{gathered}$	$\begin{gathered} 15.5 \pm 0.5 \\ (15.0-16.0) \end{gathered}$	$\begin{gathered} 13.5 \pm 0.0 \\ (13.5-13.5) \end{gathered}$	14,5
Max. body width	$\begin{gathered} 15.5 \pm 0.7 \\ (15.0-16.0) \end{gathered}$	15.0	$\begin{gathered} 15.3 \pm 1.2 \\ (14.0-16.0) \end{gathered}$	$\begin{gathered} 14.3 \pm 0.6 \\ (14.0-15.0) \end{gathered}$	$\begin{gathered} 19.8 \pm 1.3 \\ (18.0-21.0) \end{gathered}$	17,5
Pharynx length	$\begin{gathered} 116.3 \pm 5.3 \\ (112.5-120.0) \end{gathered}$	120.0	$\begin{gathered} 108.7 \pm 9.5 \\ (99.0-118.0) \end{gathered}$	$\begin{gathered} 107.0 \pm 7.0 \\ (99.0-112.0) \end{gathered}$	$\begin{gathered} 136.7 \pm 16.5 \\ (115.0-155.0) \end{gathered}$	119,0
Ant. end to Excretory pore	$\begin{gathered} 84.2 \pm 1.2 \\ (83.0-85.0) \end{gathered}$	94.0	$\begin{gathered} 83.0 \pm 3.6 \\ (79.0-86.0) \end{gathered}$	$\begin{gathered} 76.0 \pm 1.7 \\ (75.0-78.0) \end{gathered}$	-	85,0
Anal body width	$\begin{gathered} 10.3 \pm 0.4 \\ (10.0-10.5) \end{gathered}$	10.0	$\begin{gathered} 10.5 \pm 0.9 \\ (10.0-11.5) \end{gathered}$	$\begin{aligned} & 9.3 \pm 0.6 \\ & (9.0-10.0) \end{aligned}$	$\begin{gathered} 12.7 \pm 1.2 \\ (11.0-14.0) \end{gathered}$	12,0
Tail length	$\begin{aligned} & 28.5 \pm 0.7 \\ & (28.0-29.0) \end{aligned}$	30.0	$\begin{aligned} & 28.7 \pm 1.5 \\ & (27.0-30.0) \end{aligned}$	$\begin{gathered} 27.7 \pm 2.1 \\ (26.0-30.0) \end{gathered}$	$\begin{aligned} & 49.0 \pm 2.5 \\ & (47.0-52.5) \end{aligned}$	45,0
Tail annuli	$\begin{gathered} 13.5 \pm 0.7 \\ (13-14) \end{gathered}$	-	$\begin{gathered} 13.7 \pm 0.6 \\ (13-14) \end{gathered}$	-	-	52,0
Spicule		18.0	-	$\begin{gathered} 17.0 \pm 1.0 \\ (16.0-18.0) \end{gathered}$	-	-
Gubernaculum	-	10.0	-	$\begin{array}{r} 10.0 \pm 1.0 \\ (9.0-11.0) \\ \hline \end{array}$	-	-

[^11]Table S5. Morphometrics of Tylenchorhynchus claytoni Steiner, 1937, Bitylenchus iphilus Minagawa, 1995, and Tylenchorhynchus leviterminalis Siddiqi, Mukherjee \& Dasgupta, 1982, from California, USA and southern Spain ${ }^{\text {a }}$.

Species Locality host-plant	Tylenchorhynchus claytoni		Bitylenchus iphilus		Tylenchorhynchus leviterminalis
	Mississipi, USA unknown plant		Villamanrique de la Condesa, Huelva, Spain cork oak		Wilton, Connecticut, USA avocado
	Females	Male	Females	Males	Female
n	4	4	3	3	1
$L^{\text {b }}$	$\begin{aligned} & 613 \pm 49.2 \\ & (550-670) \end{aligned}$	$\begin{gathered} 620 \pm 29 \\ (583-648) \end{gathered}$	$\begin{gathered} 778.3 \pm 33.3 \\ (740-800) \end{gathered}$	$\begin{gathered} 796.7 \pm 7.6 \\ (790-805) \end{gathered}$	470.0
a	$\begin{gathered} 25.9 \pm 1.2 \\ (24.4-27.5) \end{gathered}$	$\begin{gathered} 28.7 \pm 1.3 \\ (26.8-30.4) \end{gathered}$	$\begin{gathered} 26.5 \pm 2.6 \\ (24.7-28.4) \end{gathered}$	$\begin{gathered} 31.9 \pm 1.2 \\ (30.6-32.9) \end{gathered}$	27.6
b	$\begin{gathered} 4.6 \pm 0.1 \\ (4.4-4.7) \end{gathered}$	$\begin{gathered} 4.9 \pm 0.1 \\ (4.8-5.1) \end{gathered}$	$\begin{gathered} 5.2 \pm 0.5 \\ (4.6-5.7) \end{gathered}$	$\begin{aligned} & 5.8 \pm 0.1 \\ & (5.6-5.9) \end{aligned}$	4.1
c	$\begin{gathered} 18.6 \pm 1.4 \\ (17.6-20.6) \end{gathered}$	$\begin{gathered} 14.7 \pm 0.8 \\ (13.7-15.5) \end{gathered}$	$\begin{gathered} 14.0 \pm 0.9 \\ (13.0-14.5) \end{gathered}$	$\begin{gathered} 17.3 \pm 0.5 \\ (16.8-17.7) \end{gathered}$	12.5
c^{\prime}	$\begin{aligned} & 1.9 \pm 0.5 \\ & (1.6-2.5) \end{aligned}$	$\begin{gathered} 2.5 \pm 0.1 \\ (2.4-2.7) \end{gathered}$	$\begin{aligned} & 2.9 \pm 0.3 \\ & (2.7-3.2) \end{aligned}$	(6.8-17.7)	3.1
V \%	$\begin{gathered} 56.2 \pm 1.3 \\ (55-58) \end{gathered}$		$\begin{gathered} 53.5 \pm 1.1 \\ (52.2-54.3) \end{gathered}$	-	51.4
Stylet length	$\begin{gathered} 23.1 \pm 0.8 \\ (21.8-23.8) \end{gathered}$	$\begin{aligned} & 21.6 \pm 1.6 \\ & (20-23.8) \end{aligned}$	$\begin{gathered} 17.0 \pm 0.9 \\ (16.0-17.5) \end{gathered}$	$\begin{gathered} 16.3 \pm 1.2 \\ (15.0-17.0) \end{gathered}$	20.0
Max. body width	$\begin{gathered} 23.8 \pm 3.1 \\ (20.0-27.5) \end{gathered}$	$\begin{gathered} 21.8 \pm 0.8 \\ (21.5-22.5) \end{gathered}$	$\begin{gathered} 29.0 \pm 1.4 \\ (28.0-30.0) \end{gathered}$	$\begin{gathered} 25.0 \pm 1.0 \\ (24.0-26.0) \end{gathered}$	17.0
Pharynx length	$\begin{gathered} 133 \pm 8.5 \\ (125-145) \end{gathered}$	$\begin{aligned} & 125.8 \pm 3.3 \\ & (123-130) \end{aligned}$	$\begin{gathered} 151.7 \pm 10.4 \\ (140.0-160.0) \end{gathered}$	$\begin{gathered} 138.3 \pm 2.9 \\ (135.0-140.0) \end{gathered}$	115.0
Ant. end to Excretory pore	$\begin{gathered} 103.3 \pm 6.5 \\ (97.5-112.5) \end{gathered}$	$\begin{aligned} & 102 \pm 4.8 \\ & (95-105) \end{aligned}$	${ }_{\text {- }}+$	(35.0-10.0)	82.0
Anal body width	$\begin{gathered} 17.3 \pm 1.1 \\ (16.3-18.8) \end{gathered}$	$\begin{gathered} 16.4 \pm 0.4 \\ (16.3-16.9) \end{gathered}$			12.0
Tail length	$\begin{gathered} 33.1 \pm 1.6 \\ (31.3-35.0) \end{gathered}$	$\begin{gathered} 42.3 \pm 2.3 \\ (40-45) \end{gathered}$	$\begin{gathered} 55.7 \pm 1.2 \\ (55.0-57.0) \end{gathered}$	$\begin{gathered} 46.0 \pm 1.7 \\ (45.0-48.0) \end{gathered}$	37.5
Tail annuli	$\begin{aligned} & 14 \pm 3.6 \\ & (10-17) \end{aligned}$		$\begin{gathered} 39.0 \pm 4.0 \\ (35-43) \end{gathered}$		-
Spicule	(1)	$\begin{aligned} & 24.4 \pm 0.6 \\ & (23.8-25) \end{aligned}$	(35)	$\begin{gathered} 25.0 \pm 0.0 \\ (25.0-25.0) \end{gathered}$	-
Gubernaculum	-	$\begin{array}{r} 11.1 \pm 0.8 \\ (10-11.9) \\ \hline \end{array}$	-	$\begin{array}{r} 15.0 \pm 0.0 \\ (15.0-15.0) \\ \hline \end{array}$	-

[^12]Table S6. Morphometrics of Bitylenchus maximus (Allen, 1955) Siddiqi (1986), Bitylenchus ventrosignatus (Tobar Jiménez, 1969) Jairajpuri, 1982 from southern Spain ${ }^{\text {a }}$.

Species Locality host-plant	Bitylenchus maximus		Bitylenchus maximus		Bitylenchus ventrosignatus	
	Andújar, Jaén, Spain wild olive		Niebla, Huelva, Spain wild olive		Bollullos par del Condado, Huelva, Spain grapevine	
	Females	Males	Females	Males	Females	Males
n	10	2	4	2	7	3
$L^{\text {b }}$	$\begin{array}{r} 1306 \pm 69.9 \\ (1210-1430) \end{array}$	$\begin{aligned} & 1256 \pm 19.8 \\ & (1242-1270) \end{aligned}$	$\begin{aligned} & 1310 \pm 208.9 \\ & (1031-1510) \end{aligned}$	$\begin{aligned} & 979 \pm 61.5 \\ & (935-1022) \end{aligned}$	$\begin{aligned} & 650 \pm 43.1 \\ & (610-722) \end{aligned}$	$\begin{aligned} & 520 \pm 37.5 \\ & (478-550) \end{aligned}$
a	$\begin{aligned} & 44.6 \pm 2.3 \\ & (40.8-49.0) \end{aligned}$	$\begin{aligned} & 41.9 \pm 2.5 \\ & (40.1-43.7) \end{aligned}$	$\begin{aligned} & 45.8 \pm 5.6 \\ & (39.7-50.7) \end{aligned}$	$\begin{gathered} 36.9 \pm 1.3 \\ (36.0-37.9) \end{gathered}$	$\begin{gathered} 31.3 \pm 2.1 \\ (28.9-35.1) \end{gathered}$	$\begin{gathered} 31.5 \pm 1.4 \\ (29.9-32.4) \end{gathered}$
b	$\begin{aligned} & 8.1 \pm 0.4 \\ & (7.4-8.8) \end{aligned}$	$\begin{aligned} & 7.6 \pm 0.7 \\ & (7.6-7.7) \end{aligned}$	$\begin{gathered} 8.5 \pm 1.5 \\ (7.3-10.6) \end{gathered}$	$\begin{aligned} & 6.1 \pm 0.3 \\ & (5.9-6.3) \end{aligned}$	$\begin{aligned} & 5.6 \pm 0.3 \\ & (5.3-6.0) \end{aligned}$	$\begin{aligned} & 4.5 \pm 0.3 \\ & (4.3-4.8) \end{aligned}$
c	$\begin{gathered} 22.4 \pm 1.0 \\ (21.4-23.9) \end{gathered}$	$\begin{gathered} 25.1 \pm 1.0 \\ (24.4-25.9) \end{gathered}$	$\begin{gathered} 23.5 \pm 2.0 \\ (21.5-25.4) \end{gathered}$	$\begin{gathered} 19.6 \pm 0.1 \\ (19.5-19.7) \end{gathered}$	$\begin{gathered} 14.2 \pm 1.0 \\ (12.6-15.0) \end{gathered}$	$\begin{gathered} 15.3 \pm 0.8 \\ (14.5-16.2) \end{gathered}$
c^{\prime}	$\begin{aligned} & 2.8 \pm 0.2 \\ & (2.5-3.0) \end{aligned}$	3.7	$\begin{aligned} & 2.4 \pm 0.2 \\ & (2.2-2.5) \end{aligned}$	$\begin{aligned} & 2.4 \pm 0.0 \\ & (2.4-2.4) \end{aligned}$	$\begin{aligned} & 3.0 \pm 0.3 \\ & (2.6-3.3) \end{aligned}$	$\begin{aligned} & 2.7 \pm 0.1 \\ & (2.6-2.7) \end{aligned}$
V or T \%	$\begin{gathered} 52.0 \pm 1.1 \\ (50.0-55.0) \end{gathered}$	${ }^{-}$	$\begin{gathered} 53.3 \pm 2.8 \\ (50.0-56.0) \end{gathered}$	$\begin{gathered} 35.0 \pm 5.7 \\ (31.0-39.0) \end{gathered}$	$\begin{gathered} 54.6 \pm 1.3 \\ (52.6-55.7) \end{gathered}$	$\begin{gathered} 37.7 \pm 6.1 \\ (31.0-43.0) \end{gathered}$
Stylet length	$\begin{gathered} 21.5 \pm 0.7 \\ (20.5-22.5) \end{gathered}$	$\begin{gathered} 21.2 \pm 1.8 \\ (20.0-22.5) \end{gathered}$	$\begin{gathered} 21.8 \pm 1.3 \\ (20.0-23.0) \end{gathered}$	$\begin{gathered} 21.5 \pm 0.7 \\ (21.0-22.0) \end{gathered}$	$\begin{gathered} 13.6 \pm 0.8 \\ (13.0-15.0) \end{gathered}$	$\begin{gathered} 13.3 \pm 0.6 \\ (13.0-14.0) \end{gathered}$
Max. body width	$\begin{gathered} 29.3 \pm 2.8 \\ (26.0-35.0) \end{gathered}$	$\begin{gathered} 30.0 \pm 1.4 \\ (29.0-31.0) \end{gathered}$	$\begin{gathered} 28.5 \pm 1.9 \\ (26.0-30.0) \end{gathered}$	$\begin{gathered} 26.5 \pm 0.7 \\ (26.0-27.0) \end{gathered}$	$\begin{gathered} 20.8 \pm 1.8 \\ (18.0-22.5) \end{gathered}$	$\begin{gathered} 16.5 \pm 0.5 \\ (16.0-17.0) \end{gathered}$
Pharynx length	$\begin{gathered} 160.2 \pm 4.6 \\ (155.0-170.0) \end{gathered}$	$\begin{gathered} 163.5 \pm 7.6 \\ (162.0-165.0) \end{gathered}$	$\begin{gathered} 154.5 \pm 19.9 \\ (134.0-174.0) \end{gathered}$	$\begin{gathered} 160.5 \pm 2.1 \\ (159.0-162.0) \end{gathered}$	$\begin{gathered} 116.0 \pm 6.0 \\ (105.0-124.0) \end{gathered}$	$\begin{gathered} 115.7 \pm 4.7 \\ (112.0-121.0) \end{gathered}$
Ant. end to Excretory pore	$\begin{gathered} 136.1 \pm 6.4 \\ (125.0-145.0) \end{gathered}$	$\begin{gathered} 135 \pm 7.0 \\ (130.0-140.0) \end{gathered}$	$\begin{gathered} 134.5 \pm 15.3 \\ (116.0-148.0) \end{gathered}$	$\begin{gathered} 128.0 \pm 5.7 \\ (124.0-132.0) \end{gathered}$	$\begin{gathered} 99.0 \pm 2.8 \\ (97.0-101.0) \end{gathered}$	$\begin{gathered} 86.7 \pm 4.0 \\ (82.0-89.0) \end{gathered}$
Anal body width	$\begin{gathered} 20.7 \pm 0.9 \\ (19.0-22.0) \end{gathered}$	14	$\begin{gathered} 23.3 \pm 3.1 \\ (19.0-26.0) \end{gathered}$	$\begin{gathered} 21.0 \pm 1.4 \\ (20.0-22.0) \end{gathered}$	$\begin{gathered} 15.0 \pm 1.4 \\ (12.5-16.0) \end{gathered}$	$\begin{gathered} 12.7 \pm 0.6 \\ (12.0-13.0) \end{gathered}$
Tail length	$\begin{gathered} 58.3 \pm 4.3 \\ (55.0-67.0) \end{gathered}$	$\begin{gathered} 50.0 \pm 2.8 \\ (48.0-52.0) \end{gathered}$	$\begin{array}{r} 55.5 \pm 5.3 \\ (48.0-60.0) \end{array}$	$\begin{gathered} 50.0 \pm 2.8 \\ (48.0-52.0) \end{gathered}$	$\begin{aligned} & 46.3 \pm 3.9 \\ & (41.0-50.0) \end{aligned}$	$\begin{gathered} 34.0 \pm 1.0 \\ (33.0-35.0) \end{gathered}$
Tail annuli	$\begin{gathered} 37.0 \pm 3.0 \\ (32-41) \end{gathered}$	-	$\begin{gathered} 32.5 \pm 3.1 \\ (28-35) \end{gathered}$	-	$\begin{gathered} 37.6 \pm 4.7 \\ (32-42) \end{gathered}$	-
Spicule	(1)	$\begin{gathered} 35.2 \pm 3.1 \\ (33.0-37.5) \end{gathered}$	(28-35)	$\begin{gathered} 32.0 \pm 1.4 \\ (31.0-33.0) \end{gathered}$	(32-42)	$\begin{gathered} 21.4 \pm 1.1 \\ (20.0-22.5) \end{gathered}$
Gubernaculum	-	$\begin{gathered} 15.0 \pm 0.0 \\ (15.0-15.0) \\ \hline \end{gathered}$	-	$\begin{array}{r} 15.5 \pm 0.7 \\ (15.0-16.0) \\ \hline \end{array}$	-	$\begin{array}{r} 11.5 \pm 1.0 \\ (10.0-12.0) \\ \hline \end{array}$

[^13]Table S7. Morphometrics of several populations of Tylenchorhynchus zeae Sethi \& Swarup, 1968 from southern Spain ${ }^{\text {a }}$.

Species Locality host-plant	Tylenchorhynchus zeae		Tylenchorhynchus zeae		Tylenchorhynchus zeae		Tylenchorhynchus zeae	
	Alcalá la Real, Jaén, Spain olive		Manzanilla, Huelva, Spain grapevine		Montilla, Córdoba, Spain olive		Santaella, Córdoba, Spain olive	
	Females	Males	Females	Males	Females	Males	Female	Male
n	7	2	7	3	3	2	1	1
$L^{\text {b }}$	$\begin{gathered} 638 \pm 30.7 \\ (595-677) \end{gathered}$	$\begin{gathered} 652 \pm 24.7 \\ (635-670) \end{gathered}$	$\begin{gathered} 593 \pm 34.3 \\ (540-617) \end{gathered}$	$\begin{gathered} 583 \pm 29.4 \\ (559-616) \end{gathered}$	$\begin{gathered} 530 \pm 31.9 \\ (509-530) \end{gathered}$	$\begin{aligned} & 509 \pm 9.2 \\ & (503-516) \end{aligned}$	559	506
a	$\begin{gathered} 28.1 \pm 1.4 \\ (27.0-29.8) \end{gathered}$	$\begin{gathered} 29.0 \pm 0.2 \\ (28.9-29.1) \end{gathered}$	$\begin{gathered} 26.6 \pm 1.9 \\ (23.5-28.0) \end{gathered}$	$\begin{gathered} 25.7 \pm 1.3 \\ (24.3-26.8) \end{gathered}$	$\begin{gathered} 24.5 \pm 1.2 \\ (23.4-24.5) \end{gathered}$	$\begin{gathered} 23.7 \pm 0.4 \\ (23.5-24.0) \end{gathered}$	24,3	22,0
b	$\begin{aligned} & 5.4 \pm 0.6 \\ & (4.8-5.7) \end{aligned}$	$\begin{aligned} & 5.6 \pm 0.2 \\ & (5.5-5.8) \end{aligned}$	$\begin{aligned} & 5.1 \pm 0.3 \\ & (4.8-5.2) \end{aligned}$	$\begin{aligned} & 4.9 \pm 0.4 \\ & (4.6-5.2) \end{aligned}$	$\begin{aligned} & 4.8 \pm 0.4 \\ & (4.5-4.8) \end{aligned}$	$\begin{aligned} & 4.8 \pm 0.2 \\ & (4.7-4.9) \end{aligned}$	5,1	4,6
c	$\begin{gathered} 21.2 \pm 2.6 \\ (16.7-24.0) \end{gathered}$	$\begin{gathered} 20.2 \pm 3.0 \\ (18.1-22.3) \end{gathered}$	$\begin{gathered} 19.9 \pm 1.8 \\ (17.6-22.0) \end{gathered}$	$\begin{gathered} 19.9 \pm 1.3 \\ (18.6-21.3) \end{gathered}$	$\begin{gathered} 18.9 \pm 0.7 \\ (18.2-19.1) \end{gathered}$	$\begin{gathered} 17.6 \pm 0.5 \\ (17.2-18.0) \end{gathered}$	18,6	16,9
c^{\prime}	$\begin{aligned} & 2.2 \pm 0.1 \\ & (2.1-2.5) \end{aligned}$	$\begin{aligned} & 2.4 \pm 0.4 \\ & (2.1-2.7) \end{aligned}$	$\begin{aligned} & 2.2 \pm 0.2 \\ & (2.1-2.5) \end{aligned}$	$\begin{aligned} & 2.2 \pm 0.1 \\ & (2.1-2.3) \end{aligned}$	$\begin{aligned} & 2.2 \pm 0.1 \\ & (2.2-2.3) \end{aligned}$	$\begin{aligned} & 2.2 \pm 0.2 \\ & (2.1-2.3) \end{aligned}$	2,2	2,2
V \%	$\begin{gathered} 57.1 \pm 1.4 \\ (54.0-58.1) \end{gathered}$	(2.7)	$\begin{gathered} 57.1 \pm 1.4 \\ (54.0-58.0) \end{gathered}$	(2.3)	$\begin{gathered} 57.3 \pm 1.5 \\ (57.0-59.0) \end{gathered}$	(2.	57,2	-
Stylet length	$\begin{gathered} 16.9 \pm 0.5 \\ (16.0-17.5) \end{gathered}$	$\begin{gathered} 16.0 \pm 0.0 \\ (16.0-16.0) \end{gathered}$	$\begin{gathered} 16.9 \pm 0.5 \\ (16.0-17.0) \end{gathered}$	$\begin{gathered} 16.5 \pm 0.7 \\ (16.0-17.0) \end{gathered}$	$\begin{gathered} 16.7 \pm 0.8 \\ (16.0-17.0) \end{gathered}$	$\begin{gathered} 16.3 \pm 0.4 \\ (16.0-16.5) \end{gathered}$	17	16
Max. body width	$\begin{aligned} & 22.7 \pm 0.4 \\ & (22.0-23.0) \end{aligned}$	$\begin{gathered} 22.5 \pm 0.7 \\ (22.0-23.0) \end{gathered}$	$\begin{gathered} 22.4 \pm 0.7 \\ (21.0-23.0) \end{gathered}$	$\begin{gathered} 22.7 \pm 0.6 \\ (22.0-23.0) \end{gathered}$	$\begin{gathered} 21.7 \pm 0.6 \\ (21.0-22.0) \end{gathered}$	$\begin{gathered} 21.5 \pm 0.7 \\ (21.0-22.0) \end{gathered}$	23	23
Pharynx length	$\begin{gathered} 120.3 \pm 4.0 \\ (118.0-125.0) \end{gathered}$	$\begin{gathered} 115.5 \pm 0.7 \\ (115.0-116.0) \end{gathered}$	$\begin{gathered} 114.1 \pm 6.4 \\ (107.0-125.0) \end{gathered}$	$\begin{gathered} 117.3 \pm 8.0 \\ (109.0-125.0) \end{gathered}$	$\begin{gathered} 112.0 \pm 3.0 \\ (109.0-115.0) \end{gathered}$	$\begin{gathered} 106.0 \pm 5.7 \\ (102.0-110.0) \end{gathered}$	109	109
Ant. end to Excretory pore	-	-	$\begin{gathered} 83.1 \pm 4.1 \\ (79.0-90.0) \end{gathered}$	$\begin{gathered} 80.7 \pm 1.5 \\ (79.0-82.0) \end{gathered}$	$\begin{gathered} 77.7 \pm 2.5 \\ (75.0-80.0) \end{gathered}$	$\begin{gathered} 78.0 \pm 2.8 \\ (76.0-80.0) \end{gathered}$	79	79
Anal body width	$\begin{gathered} 13.6 \pm 1.5 \\ (11.0-15.0) \end{gathered}$	$\begin{gathered} 13.5 \pm 0.7 \\ (13.0-14.0) \end{gathered}$	$\begin{gathered} 13.5 \pm 1.0 \\ (12.0-14.0) \end{gathered}$	$\begin{gathered} 13.5 \pm 1.5 \\ (12.0-15.0) \end{gathered}$	$\begin{gathered} 13.0 \pm 1.0 \\ (12.0-13.0) \end{gathered}$	$\begin{gathered} 13.3 \pm 0.4 \\ (13.0-13.5 .0) \end{gathered}$	13,5	13,5
Tail length	$\begin{gathered} 30.6 \pm 4.1 \\ (25.0-37.0) \end{gathered}$	$\begin{gathered} 32.5 \pm 3.5 \\ (30.0-35.0) \end{gathered}$	$\begin{aligned} & 30.1 \pm 3.0 \\ & (27.0-35.0) \end{aligned}$	$\begin{gathered} 29.3 \pm 2.1 \\ (27.0-31.0) \end{gathered}$	$\begin{aligned} & 28.0 \pm 1.0 \\ & (27.0-29.0) \end{aligned}$	$\begin{gathered} 29.0 \pm 1.4 \\ (28.0-30.0) \end{gathered}$	30	30
Tail annuli	$\begin{gathered} 16.3 \pm 2.3 \\ (13-20) \end{gathered}$	-	$\begin{gathered} 17.0 \pm 2.8 \\ (13-21) \end{gathered}$	-	$\begin{gathered} 18.3 \pm 1.5 \\ (17-20) \end{gathered}$	$\begin{gathered} 17.5 \pm 2.1 \\ (16-19) \end{gathered}$	16	16
Spicule	-	$\begin{gathered} 19.0 \pm 2.8 \\ (17.0-21.0) \end{gathered}$	-	$\begin{gathered} 18.0 \pm 1.0 \\ (17.0-19.0) \end{gathered}$	-	$\begin{gathered} 16.8 \pm 0.4 \\ (16.5-17.0) \end{gathered}$	-	17
Gubernaculum	-	$\begin{array}{r} 10.5 \pm 0.7 \\ (10.0-11.0) \\ \hline \end{array}$	-	$\begin{gathered} 11.0 \pm 1.0 \\ (10.0-12.0) \\ \hline \end{gathered}$	-	$\begin{array}{r} 10.3 \pm 0.4 \\ (10.0-10.5) \\ \hline \end{array}$	-	10

[^14]Table S8. Morphometrics of Tylenchorhynchus agri Ferris, 1963, Tylenchorhynchus thermophilus Golden, Baldwin \& Mundo-Ocampo, 1995 and Telotylenchus sp. from USA ${ }^{\text {a }}$.

Species Locality host-plant	Tylenchorhynchus agri	Tylenchorhynchus thermophilus		Telotylenchus sp.
	Lake Worth, FL, USA date palm	Indiana, USA unknown plant		Bank of June Lake, CA, USA grasses
	Female	Female	Male	Female
n	1	7	3	1
$L^{\text {b }}$	662	705	655	795
a	32.9	24.7	26.7	33.1
b	4.9	4.3	4.3	3.2
c	13.3	16.2	16.9	14.0
c^{\prime}	3.1	2.6	2.1	3.6
V \%	55.1	59.3	-	59.7
Stylet length	21.0	22.0	22.0	24.0
Max. body width	20.1	28.5	24.5	24.0
Pharynx length	135.0	163.0	152.0	248
Ant. end to Excretory pore	112.0	115.5	-	120
Anal body width	15.5	17.0	18.0	16.0
Tail length	50.0	43.5	39.0	57
Tail annuli	25	28	-	39
Spicule	-	-	24.5	-
Gubernaculum	-	-	12.5	-

${ }^{\text {a }}$ Measurements are in $\mu \mathrm{m}$ and in the form: mean \pm standard deviation (range)
${ }^{\mathrm{b}}$ Abbreviations as defined in Siddiqi (2000)

[^0]: *Corresponding author. E-mail: p.castillo@csic.es

[^1]: *Sequenced population but not deposited in GenBank database as identical to other D2-D3 sequences in the species.
 CDFA, California Department of Food and Agriculture; D2-D3, expansion segments of the large ribosomal subunit (28S); ITS, internal transcribed spacer; PPDC, Plant Pest Diagnostic Center.

[^2]:

[^3]: Measurements ar length; body length/maximum body width; b, body length/pharyngeal length; c, body length/tail length; c^{\prime}, tail length/body width at anus; V , (distance from anterior end to vulva/body length) $\times 100 ; \mathrm{T}$ (distance from cloacal aperture to anterior end of testis/body length) $\times 100$.

[^4]: cloacal aperture to anterior end of testis/body length) $\times 100$.

[^5]: cloacal aperture to anterior end of testis/body length) $\times 100$.

[^6]: *Sequences of new species are in bold letters.

[^7]: * $P<0.05$ indicates the significant differences between the two inferred tree topologies.
 \dagger Bitylenchus maximus is considered as a representative of Sauertylenchus.
 \ddagger Systematics of the genus Bitylenchus accepted in the present study.
 §Bitylenchus and Telotylenchus are synonyms of Tylenchorhynchus.

[^8]: Measurements are in $\mu \mathrm{m}$ and in the form: mean \pm standard deviation (range)
 ${ }^{\text {a }}$ L, body length, a, body length/maximum body width; b, body length/pharyngeal length; c, body length/tail length; c^{\prime}, tail length/body width at anus; V, (distance from anterior end to vulva/body length) $\times 100$

[^9]: * Measurements are in $\mu \mathrm{m}$ and in the form: mean \pm standard deviation (range)
 ${ }^{\text {a }}$ L, body length, a, body length/maximum body width; b, body length/pharyngeal length; c, body length/tail length; c^{\prime}, tail length/body width at anus; V, (distance from anterior end to vulva/body length) $\times 100$

[^10]: * Measurements are in $\mu \mathrm{m}$ and in the form: mean \pm standard deviation (range)
 ${ }^{\text {a }}$ L, body length, a, body length/maximum body width; b, body length/pharyngeal length; c, body length/tail length; c^{\prime}, tail length/body width at anus; V, (distance from anterior end to vulva/body length) $\times 100$

[^11]: * Measurements are in $\mu \mathrm{m}$ and in the form: mean \pm standard deviation (range)
 ${ }^{\text {a }}$ L, body length, a, body length/maximum body width; b, body length/pharyngeal length; c, body length/tail length; c^{\prime}, tail length/body width at anus; V, (distance from anterior end to vulva/body length) $\times 100$

[^12]: ${ }^{\text {a }}$ Measurements are in $\mu \mathrm{m}$ and in the form: mean \pm standard deviation (range)
 ${ }^{\mathrm{b}}$ Abbreviations as defined in Siddiqi (2000)

[^13]: ${ }^{\text {a }}$ Measurements are in $\mu \mathrm{m}$ and in the form: mean \pm standard deviation (range)
 ${ }^{\mathrm{b}}$ Abbreviations as defined in Siddiqi (2000)

[^14]: ${ }^{a}$ Measurements are in $\mu \mathrm{m}$ and in the form: mean \pm standard deviation (range)
 ${ }^{\mathrm{b}}$ Abbreviations as defined in Siddiqi (2000)

